
RL-TR-91 -180 AD-A241 621
Final Technical Report IliiU\1l\1III1 11\ii111
August 1991

ANALYSIS AND DEMONSTRATION OF
DIAGNOSTIC PERFORMANCE IN MODERN
ELECTRONIC SYSTEMS

ALPHATECH Inc.

Jerold L. Weiss, James C. Deckert, Kevin B. Kelly (GE-ASD)' DIC
VLECTE

OCT.08 19911

APPROVED FOR PUBL/CREEA$E, 01STRIBUTION UNLIMIED

91I-12544/ lffliffi i/l fl i/ /h ll

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs

Office (PA) and is releasable to the National Technical Information

Service (NTIS). At NTIS it will be releasable to the general public,

including foreign nations.

RL-TR-91-180 has been reviewed and is approved for publication.

APPROVED:4

ROY F. STRATTON
Project Engineer

FOR THE COMANDER: e.A4 7.

JOHN J. BART

Technical Director of Reliability & Compatibility

If your address has changed or if you wish to be removed from
the Rome

Laboratory mailing list, or if the addressee is no longer
employed by

your organization, please notify RL (ERSR) Griffiss AFB, NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual
obligations or

notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
,e0crU9 dW tC (ct rarrtD esn u to weage I r p resoa n;cdng te ome i revIwSg nr-ons, segcg cxWrng dg a ov.e,

ci ricruzi n±i & ~i rci reoazcrh wd&s t~~r o WsrrguIn kl~er s Sueles Drec ori.e ho ricirr, .p~cs- teOReptits. 12 5
h3aw: v 5. 1.1204 Air- VA 2C-40. lto±oOfo d Mw-tagamr an ~ l P apxen ~ ri=P.o~e= (0 018i W strl go DC- 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3, REPORT TYPE AND DATE $ COVERED

I August 1991 Final Sep 88 - May 90
4. TITLE AND $UBiTLE 5. FUNDING NUMBERS
ANALYSIS AND DEMONSTRATION OF DIAGNOSTIC PERFORMANCE IN C - F30602-S8-C-0068
MODERN ELECTRONIC SYSTEMS PE - 62702F

6. AUTHOR(S) PR - 2333

TA - 02
Jerold L. Weiss, James C. Deckert, TU - 3P

Kevin B. Kelly (GE-ASD)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

ALPHATECH Inc. REPORT NUMBER

50 Mall Road TR-494

Burlington MA 01803-4537

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Laboratory (ERSR) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700 RL-TR-91-180

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Roy F. Stratton/ERSR/(315) 330-4205

12a DISTRIBUIONIAVAJLABIUTY STATEMENT 12b. DISTRIBUION CODE

Approved for public release; distribution unlimited.

13, ABSTRACTm-2um ow=cs)

This report presents methods and procedures for validation and demonstration of diag-

nostic system performance for use as part of the Government's acceptance test

procedures for electronic systems having contractual diagnostic requirements. These

methods proviue for examining the adequacy of the diagnostics architecture,

establishing bounds on fraction of faults detected (FFD) and fraction of faults

isolated (FFI) (the only two figures of merit considered here), and choosing faults

to be inserted in the demonstration, but fall short of confirming exact values for FFD

and FF!. The current state-of-the-art does not support an exact determination of FFD

and FF1 for new equipment, especially that containing higher density VLSI and VHSIC

electronic devices, because of the inability to determine the failure rates for the

various failure modes, and the difficulty in inserting a truly random sample of faults.

The effort also reports data on failure modes for a selection of modern electronic

components (Table 4-2).

Pages 1-15 discuss the contents of the various sections of the report.

NOTE: Rome Laboratorv/RL (formerly Rome Air Development Center/RADC)

14. SUBJECT TERMS IS NUMBER OF PAGES

Diagnostics, Acceptance Testing, Validation. Demonstrations 212
a PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION '19. SECU'rrY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS P AGE OF ABJBCT~
UNCLASSIFIED 'NCLASSIFIED R yj SIFIED U

NSN 75401.20-50= S! WO FrFmn298 (Rev ?.rw
Pteocbcd ty ANSI S15 Z-7 I8
29012

EXECUTIVE SUMMARY

The objective of this effort is the development of methodologies and procedures for
validation and demonstration of the performance of diagnostic s) stems associated with electronic

circuit boards containing VLSI/VHSIC deices, and line-replaceable units consisting of many such

boards. All types of diagnostic capabilities are considered. This includes on-equipment built-in

test (including monitoring, initiated, power-up test, etc.), organizational-level test systems (such

as portable maintenance aids), and test progams for depot-le, el automatic test equipment. These

procedures are intended for use as part of the Government's acceptance test procedures for elec-

tronic systems having contractual diagnostic requirements; the diagnostic capability may be either

internal or external.

For this effort we are interested in two peifonnance measures (or figures of merit): fraction

of faults detected .qFFD) and fraction of faults isolated (FF1), where FFD refers to the fraction of

total faults, which occur over the useful lifetime of the system, that are detected by a specified

means, and FFI refers to the fraction of lifetime faults that are correctly isolated to ambiguity

groups of specified size by specified means. Diagnostic system characterization for useful lifetime

faults is chosen not only because of the absence of a logical alternative, but also because such

real-world behavior affects a myriad of operational and logistics performance measures, such as

readiness level, usage rate of spare parts, a,, erage dow n time of the equipment, unnecessary down

time due to false alarms, mean time between depot maintenance actions due to lack of organization-

level fault isolation, etc.

Relating FFD and FFI to useful lifetime faults dictates that fielded-equipment failure rates

must be considered. As we determined through an extensive literature survey as part of this effort,

the accurate characterization of physical faults over a system's useful lifetime presents difficulties

for modern electronic systems. A single VLSI chip contains of the order of 100,000 transistors,

each of which may have any of a number of physical failure modes (e.g., shorts, opens, new

(parasitic) device, degraded device) depending upon the layout of the circuit and the size of the

physical defec,. The functional manifestation of these phsical faults includes the ubiquitous

stuck-at condition (wkhich, when occurring on internal nodes, causes incoirect behavior for only

some input stimuli), high- and low-impedance states, increased circuit response delays, additional
system states, and others. The accuracy with %which FFD and FFI can be predicted by either

analysis or demonstration depends upon the ability to determine the relative frequency with which
the various faults can/will occur. Unfortunately, empirical data and prediction standards such as
MIL-STD-217E provide failure rates only for devices (and higher levels of indenture) as a whole.
Likewise, insufficient empirical data exist for the relatively few systems containing VLSI/VHSIC
components fielded today to provide precise failure rate information.

As a result of our study, we feel that the combined effects of the sheer number of potential

failure modes and the uncertainties associated w ith the lifetime rates for those modes preclude,
in general, the reliable, accurate validation of the diagnostic capability of a system composed of

boards containing VLSI/VHSIC components. This is especially true if validation is desired
through only a live demonstration involving the insertion of a series of (physical or software)

faults, since a significant number of failure modes are precluded from insertion due to topological
and other practical constraints, and the total number of insertions is constrained by the limited

demonstration time available.

Because we determined that reliable, accurate testability validation cannot be accomplished

for modem electronic equipment by live demonstration alone, we have developed an alternative
two-phase methodology in the spirit of MIL-STD-2165. The first phase consists of a diagnostic
test-effectiveness analysis (supported by simulation and engineering judgement) that is used to
predict performance, in the most precise quantitative manner possible, as a means to uncover any
diagnostic system design deficiencies, determine critical assumptions, etc. Our set-theoretic
approach to test effectiveness analysis does not require the (often erroneous) assumption of diag-
nostic test outcome independence. The second phase consists of a demonstration, in a factory

en, ironment, that % crifies that the functional requirements, consistent with the assumptions and
conclusions of the test effectiveness analysis, have been met. In essence, this two-phase approach
employs as many fault insertion demonstrations as are practical, and uses simulation and engineer-

ing judgement as backup means for pro% iding the Government (during the analysis phase) with
quantitative assurances of the quality of the diagnostic capability being procured. It should be

emphasized, however, that we still must rely on engineering judgement in several areas, including
the definition of fault modes for a gi,.en component, the definition of diagnostic coverage figures

for those component modes, the assignment of portions of the overall component failure rate
(computed using MIL-IIDBK-217 or similar means, or obtained directly through use of increas-
ingly common manufacturer-warranted figures) to those fault modes, and the bounds or confidence
levels for these quantities. Page 1-15 discusses the contents of the report by chapters.

H1

CONTENTS

Section Paoe

EXECUTIVE SUMMARY .. i

LIST OF FIGURES ... vi

LIST OF TABLES ... vii

ACRONYMS AND ABBREVIATIONS .. viii

1 INTRODUCTION ... 1-1

1.1 Overview ... 1-1
1.2 Problem Definition .. 1-4
1.3 Summary of Results .. 1-7

1.3.1 Overview of the Effort ... 1-7

1.3.2 Summary .. 1-8

1.4 Outline of the Remainder of the Report .. 1-15

2 ASSESSMENT OF CURRENT VERIFICATION METHODS 2-1

2.1 Review of Established Demonstration/Validation Practices 2-1
2.2 Other Suggested Approaches .. 2-6

3 PROPOSED APPROACH TO DEMONSTRATION AND VALIDATION
OF DIAGNOSTIC CAPABILITY ... 3-1

3.1 Motivation .. 3-1
3.2 Overview of Approach .. 3-3

3.2.1 Requirements for Diagnostic Demonstrations-Verification 3-4
3.2.2 Requirements for Diagnostic Performance Analyses-Validation.. 3-6

3.3 Summary ... 3-8

4 CHARACTERIZATION OF FIELD-LEVEL FAULTS IN ELECTRONIC
EQUIPMENT .. 4-1

4.1 Failures in Electronic Equipment .. 4-2
4.2 Failures in Digital VLSI Devices .. 4-3

4.2.1 Physical Fault Mechanisms in VLSI Devices 4-3
4.2.2 Models of the Effects of VLSI Device Faults 4-5

4.3 Examination of Actual Fielded-Equipment Faults 4-10

Ri

CONTENTS (continued)

Section page

4.4 Summary: Important Failure Effects to Consider in Modem
Electronic Equipment ... 4-13

5 THE ROLE OF FAULT SIMULATION ... 5-1

5.1 Fault Simulation Techniques .. 5-2

5.1.1 Gate-Level Logical Models ... 5-3
5.1.2 Register-Transfer-Level Logical Models 5-5

5.2 Design Analysis Techniques .. 5-6

6 GUIDELINES FOR PERFORMING FAULT INSERTIONS 6-1

6.1 Introduction ... 6-1
6.2 Physical Fault Insertion Techniques .. 6-3
6.3 Fault Emulation .. 6-7

7 GUIDELINES FOR PREPARATION OF A DEMONSTRATION PLAN 7-1

8 ANALYSIS METHODS .. 8-1

8.1 Overview 8-1
8.2 Introduction and Motivation ... 8-3
8.3 A Probabilistic Methodology .. 8-7

8.3.1 An Introductory Example ... 8-7
8.3.2 A More Complex Example ... 8-9
8.3.3 Summary ... 8-14

8.4 A Set-Theoretic Methodology ... 8-15

8.4.1 FFD for Dedicated Test ... 8-15
8.4.2 FFD with Overlapping Coverage 8-16
8.4.3 FFD with Disjoint and Nondisjoint Fault Classes of Overlapping

Coverage .. 8-23
8.4.4 FFI Calculations ... 8-27
8.4.5 Summary ... 8-31

9 GUIDELINES FOR PREPARATION OF A DIAGNOSTIC
TEST-EFFECTIVENESS ANALYSIS REPORT 9-1

10 SUMMARY AND SUGGESTIONS FOR FUTURE WORK 10-1

REFERENCES ... R-1

iv

CONTENTS (continued)

Section Page

APPENDIX-APPLICATION OF THE METHODOLOGY TO A MODERN MILITARY
ELECTRONIC UNIT .. A-1

A.1 Introduction.. A-I
A.2 PDIU Test-Effectiveness Analysis Report -A-i
A-3 PDTU Demonstration Plan... A-26
A.4 Summary and Conclusions .. A-78

Accession For
NTI GRA&I
DTIC TAB0
Unannounced 0
Justification

V

LIST OF FIGURES

Number Pauoe

4-1 Blank UUT Test Result Form .. 4-11

4-2 Example of Filled-In Form.. 4-11

8-1 Information Needed to Perform Test-Effectiveness Analysis 8-2

8-2 Hierarchical Analysis ... 8-2

8-3 Overlapping Test Coverage ... 8-17

8-4 Fault Coverage of Tests 1 and 2... 8-25

8-5 Overlapping Test coverag 1e.. 8-26

Vi

LIST OF TABLES

Number Pa2e

4-1 IC Failure Mode Distribution Summary...................................... 4-5

4-2 Top Ten Component Failures for 1989 and 1990 (2 mos.) 4-12

8-1 Raw Fault Accountability Data... 8-8

8-2 Hypothetical Fault Accountability Data....................................... 8-9

8-3 Dedicated Test Situation... 8-15

8-4 Truth Table for Case 4.. 8-20

vii

ACRONYMS AND ABBREVIATIONS

A address (on PDIU board drawings)

AD address and data (on PDIU board drawings)

A/D analog-to-digital

ASIC application-specific integrated circuit

ATE automatic test equipment

BIT built-in test

BITE built-in test equipment

CAD computer-aided design

CID Commander's Integrated Display for the Army M1A2 tank

CM continuous monitoring tests of the PDIU

CMOS complementary metal oxide semiconductor

CPU central processing unit

D-level depot-level

DC direct current

DCU display and control unit of the PDIU

DP demonstration plan

DTACK data acknowledgement

DVM digital volt meter

EEPROM electrically erasable PROM

EOS electrical overstress

EPROM erasable PROM

ESD electrostatic discharge

FFD fraction of faults detected

FFI fraction of faults isolated

FMEA failure mode and effects analysis

FMECA failure mode effects and criticality analysis

FPMH faults per million hours

GaAs gallium arsenide

GE-ASD General Electric Automated Systems Department

glue logic AND/OR/NOR gates (on PDIU board drawings)

IC integrated circuit

viii

ICE in-circuit emulator

RU replaceable unit (line or shop)

MOS metal oxide semiconductor

MUX multiplexer

O-level organization-level

OD on-demand/on-event tests of the PDIU

PAL programmable array logic

PCT programmable counter/timer

PDIU Prognostic Diagnostic Interface Unit, a modem Army electronic system

PLA programmable logic array

PMA portable maintenance aid

PROM programmable read-only memory

PUCT power-up confidence test of the PDIU

RAC Reliability Analysis Center, PO Box 4700, Rome, NY, 13440

RADC Rome Air Development Center (an Air Force laboratory), renamed Rome
Laboratory

RAIM random access memory

RC resistor-capacitor

ROM read-only memory

R/R remove/replace

RTE run-time environment

RTI remote terminal interface

RTOK re-test OK

RU replaceable unit (line or shop)

s/a stuck-at

SP signal protection

SRAM static RAM

STE/ICE Simplified Test Equipmentjnternal Combustion Engincs, a modem Army elc,.::oni,
system

STE/ICE-R STE/ICE-Reprogrammable, a modern Army electronic system

TPS test program set

TQM total quality management

7IL transistor-transistor logic

UUT unit under test

V volt

Vcc supply voltage (+5V for the PDIU)

VHSIC very high-speed integrated circuit

ix

VLSI very large-scale integration

Xceiver transceiver (on PDIU board drawings)

Ix

SECTION 1

INTRODUCTION

1.1 OVERVIEW

The objective of this effort is the development of methodologies and procedures for vali-

dation and demonstration of the performance of the diagnostic systems associated with electronic

circuit boards containing VLSI/VHSIC devices, and replaceable units (RUs) consisting of many

such boards. All types of diagnostic capabilities are considered. This includes on-equipment

built-in test (BIT) (including monitoring, initiated, power-up test, etc.), organizational-level

(0-level) test systems (such as portable maintenance aids (PMAs)), and test progrms for depot-

level (D-level) automatic test equipment (ATE). These procedures are intended for use as part of

the Government's acceptance test procedure' for electronic systems having contractual diagnostic

requirements; the diagnostic capability may be either internal or external.

Before proceeding further, it is important that we clarify our use of the words verification

and validation in this report (Hoover and Perry, 1989). Verification of a diagnostic capability is

the determination that the diagnostic capability as built properly implements the diagnostic

capability as designed (i.e., "did we build the product right?"). Validation, on the other hand, is

the determination that the diagnostic capability as designed satisfies the stipulated diagnostic

requirements, such as x ± y percent FFD with z percent confidence (i.e., "did we build the right

product?").

For this effort, two perfonnance measures (or figures of merit) are of interest: fraction of

faults detected (FFD) and fraction of faults isolated (FFI). Herein, FFD refers to the fraction of

total faults, which occur over the useful lifetime of the system, that are detected by a specified

means. The fault universe for FFD may be all faults, including built-in test equipment (BITE)

failures, or it may be only primary equipment failures, only mission-critical failures, or any other

1-1

specific subset of failures. FFI refers to the fraction of lifetime faults that are correctiy isolated to

ambiguity groups of specified size by specified mcans. FF1 may, also refer to any specified fault

universe (most often seen is the set of detected faults).

Diagnostic system characterization for useful lifetime faults is chosen not only because of

the absence of a logical alternative, but also because such real-world behavior affects a myriad of

operational and logistics performance measures, such as readiness level, usage rate of spare parts,

average down time of the equipment, unnecessary down time due to false alarms, mean time

between depot mainAtenance actions due to lack of organization-level fault isolation, etc.)

Both measures require specification of a means of detection or isolation. This is important

since it defines the diagnostic outcome to be verified. Fof example, setting a fault-status bit in a

specific RAM location may be one means of isolation for a power-up test. The perfonnance of this

means of isolation, however, is not the same as the display of a fault-detect message on a PMA.

This is because some faults may correctly set the fault-status bit, but may also prevent its display.

(Note-such a detect-but-not-report error occurred in the demonstration discussed in subsection

A.3). For FFI, the ambiguity group size of interest must also be specified. Faults that are either

incorrectly isolated (isolated to an ambiguity group not containing the fault) or correctly isolated to

groups of larger than the specified size are not included in FFI. Usually ambiguity group size is

specified as one replaceable unit (e.g., a board at O-level or a device at D-level).

Because both FFD and FFI refer to useful lifetime faults, fielded-equipmeat failure rates

must be considered. The accurate characterization of physical faults over a system's useful lifetime

presents difficulties for modem electronic systems, in v hich L single VLSI chip contains of the

order of 100,000 transistors, each of which may have any of a number of physical failure modes

(e.g., shorts, opens, new (parasitic) device, degraded device) depending upon the layout of the

circuit and the size of the physical defect (Maly, 1987). The functional manifestation of these

physical faults includes the ubiquitous stuck-at (s/a) condition (which, when occurring on internal

nodes, causes incorrect behavior for only some input stimuli), high- and low-impedance states,

increased circuit response delays, additional system states, and others (Abraham and Fuchs,

1-2

1986). The accuracy with which FFD and FFI can be predicted by either analysis or

demonstrati.-n depends upon the ability to detemine the relative frequency with which the various

faults can/will occur. Unfortunately, empirical data and prediction standards such as MIL-HDBK-

217 provide failure rates only for devices (and higher levels of indenture) as a whole. Likewise,

insufficient empirical data exist for the relatively few systems containing VLSI/VHSIC components

fielded today to pr.ovide precise failure rate infomaation.

As the above discussion suggests, we feel that the combined effects of the sheer number of

potential failure modes and the uncertainties associated with the lifetime rates for those modes pre-

clude, in general, the reliable, accurate val:dation of the diagnostic capability of a system composed

of boards containing VLSIIVHSIC components. This is especially true if validation is desired

through only a live demonstration involving the insertion of a series of (physical or software)

faults, since a significant number of failure modes are precluded from insertion due to topological

and other practical constraints, and the total number of insertions is constrained by the limited

demonstration time available.

Because reliable, accurate testability validation cannot be accomplished for modem elec-

tronic equipment by live demonstration alone, we have developed a two-phase methodology in the

spirit of MIL-STD-2165. The first phase consists of a diagnostic test-effectiveness analysis

(supported by simulation and engineering judgement) that is used to predict performance, in the

most precise quantitative manner possible, as a means to uncover any diagnostic system design

deficiencies, determine critical assumptions, etc. Our set-theoretic approach to test effectiveness

analysis does not require the (often erroneous) assumption of diagnostic test outcome indepen-

dence. The second phase consists of a demonstration, in a factory environment, that verifies that

the functional requirements, consistent with the assumptions and conclusions of the test effective-

ness analyis, have been met. In essence, this two-phased approach employs as many fault inser-

tion demonstrations as are practical, and uses simulation and engineering judgement as backup

means for providing the Government (during the analysis phase) with quantitative assurances of

the quality of the diagnostic capability being procured. It should be emphasized, however, that we

1-3

must rely on engineering judgement in several areas, including the definition of fault modes for a

given compqnent, the definition of diagnostic coverage figures for those component modes, the

assignment of portions of the overall component failure rate (computed using MIL-HDBK-217 or

similar means, or obtained directly through use of increasingly common manufacturer-warranted

figures) to those fault modes, and the bounds or confidence levels for these quantities.

1.2 PROBLEM DEFINITION

In order to understand the diagnostic validation and demonstration problem more thor-

oughly, it is useful to define FFD and FFI more precisely. Formally, FFD and FFI are defined by

N
Laik i

i=l

FFD -
XT

N
Jbiki
1=1

FFI -

where a1 is equal to 1 if fault i is detected by the specified means and zero otherwise, b, equals I if

fault i is correctly isolated to an ambiguity group of the specified size by the specified meais and

zero otherwise, N is the total number of faults being considered, X, is the failure rate of fault i, and

XT is the failure rate of the entire system. (Note that XT is not necessarily equal to the sum of all

Xis since we usually cannot enumerate all of the faults in the fault universe).

To , alidate whether or not a diagnostic capability meets desired levels of FFD and FFI, the

quantities X1, XT, a,, and bi must be knov, n or estimated. Under ideal circumstances, all of the

poible faults of interest can be listed and their failure rates, X1, determined (say through use of

MIL-ttDBIK-217 plus engineering judgement). The total failure rate, :.T, can be determined by

adding the X~s (sinct, ideally, complete enumeration of faults is possible). Then a, and bi can be

1-4

determined by inserting each of the faults in the list into the system and observing if they are

detected and correctly isolated by the specified means.

Obviously, there are many practical problems associated with using this ideal method for

modem electronic systems containing VLSI/VHSIC devices. A brief discussion of these problems

is given below.

Problem 1: Too Many Faults

Even in moderately complex systems, the number of potential faults can be very, very

large. To insert each fault for demonstration purposes is too time consuming to be practical. This

problem is adequately addressed by the concept of random sampling and appears in MIL-STD-

417A and MIL-STD-2077. Of course, the accuracy of the knowledge of the relative frequencies of

the dominant fault modes directly impacts the reliability of the sampling results.

Problem 2: Inaccessible Faults

As devices get more complex and more dense, a greater percentage of fault mechanisms

occur within devices and are not strictly accessible for demonstration purposes (i.e., one can not

insert a stuck-at fault on a node within a VLSI device without the addition of fault-injection

circuitry or special software). As a result, the assumption of many verification methods that faults

can be selected randomly (according to failure rate or not) is violated.

The obvious alternative is to determine how each internal fault mechanism manifests itself

at the device output and then insert the fault "effect" at the device boundary, if possible. As

discussed in subsection 2.2, this concept is rather limited for a variety of reasons.

The physical insertion of a fault's effect at the device boundary is also not without its

limitations, such as:

• lack of physical access (e.g., component not socketed),

" potential damage to other components, resulting in the insertion of multiple (unknown)
faults, and

" requirement for special support equipment that may not be available.

1-5

Problem 3: Inaccurate Failure Rates

Failure rate prediction is a lengthy subject unto itself (see, for example, USDoD (1986),

USAF (1988), Coit et al. (1984), Rossi (1986), Wong et al. (1987), Zins and Smith (1987), and

Stockman and Rash (1985)) and will not be discussed in detail here. In general, there are several

reasons for possible inaccuracies. First, only recently have prediction methods been developed for

VLSI/VHSIC technology (Denson and Brusius, 1989). Since there are relatively few data on field

failures of such devices, verification of these methods is not yet possible. Secondly, such

prediction methods provide failure rates for devices, not the failure mechanisms (or effects) that

must be considered for validation of diagnostic capabilities. Finally, even predicted failure rates of

devices may be inaccurate with respect to field failures since these rates are sometimes governed by

design characteristics that are not captured by MIL-1-IDBK-217 (e.g., use of the wrong connector

in environmentally-stressing applications). This inherent, irreducible inaccuracy of failure rate

estimates is a fact of life that must be recognized, and acco.nmodated, in any practical, useful

methodology.

Problem 4: Unknown Fault Modes

While the single stuck-at logical fault model has been widely used for developing test pat-

terns and assessing fault coverage for digital devices, field experience (e.g., see Meth and Musson

(1983)) suggests that this model does not come close to characterizing the faults seen in the field.

From physical analyses such as Galiay et al. (1980) and Abraham and Fuchs (1986), it is clear that

the single stuck-at fault does not cover all possible fau, .. .ech.;;;i-ns. For example, multiple faults

are not uncommon, high/low impedance states may occur, cU.-, delays can be induced, and even

extra states can be introduced (i.e., a combinational logic c., _uit can be turned into a sequential

circuit). Knowing which of these effects are the important ones to consider (i.e., which have the

highest failure ratzs) is virtually impossible to predict before the system is fielded. This is true

even if detailed fault mode information were known for component elements in other applications

since actual fault beha% ior is very dependent on the specific topology of the subcomponents relative

to heat sources, magnetic sources, and the like.

1.6

Problem 5: Internal Diagnostic Capabilities

One of the unique features of VHSIC tLtchnology is the incorporation of BIT functions

within the chip itself. These functions include both monitoring BIT functions and externally

initiated BIT. For such devices, it no longer makes s - t.:) talk about inserting faults or emulating

faulty device behavior for demonstration punose:, , . Tcation of systems containing such

devices, the main questions are: can the system in u . interpret the results of cn-chip BIT,

what are the performance characteristics of the on-chip AIT, and how do the BIT performance

measures relate to the overall diagnostic system perfor.. 1ce measures? Of course, vendor- or

Government-supplied on-chip BIT performance zharac. -ixttics inay be used when available.

1.3 SUMMARY OF RESULTS

1.3.1 Overview of the Effort

This effort consisted of four major tasks:

1. Survey and Analyze Current Methods,

2. Develop New Methods (as required),

3. Develop Practical Procedu-n; to Apply Selected Methods, and

4. Demonstration.

The methods being surveyed and developed in Task 2 included:

a. Demonstration, Validation, and Verification Methods,

b. Methods of Fault Characterization,

c. Fault Simulation Methods, and

d. Fault Insertion Methods

Demonstration, validation, and verification methods (a) refer to practical procedures for

accomplishing testability verification. These procedures may include specific methods of fault

characterization, simulation and/or inoertion or they may leave open the specific selection of

methods. The demonstration task (Task 4) was intended to illustrate the resulting approach by

applying it to an existing system. The following is a summary of the results of these tasks.

1-7

1.3.2 Summary

TASK I SURVEY AND ANALYZE CURRENT AND PROPOSED METHODS

An extensive database of open literature, DoD, Air Force, and industrial sources was

developed. The databatse includes references to, and summaries of, over 13C sources in the

following areas:

" Demo:nsuration/Validation Techniques

• Fault Insertion Methods

A 'ault Simulation and Fault Grading (Analysis) Methods

• Fault Characterization

Section 2 provides an analysis of this data. Statistical demonstration procedures

(e.g., MIL-STD-471A and 2077) are prevalent in current acceptance procedures. Our study has

concluded, however, that such procedures are misapplied to the testability validation problem.

This is because: a) failut. rates are not known precisely (including the fact that not all fault modes

are known), and b) selection of faults for demonstration cannot be done completely randomly since

many types of faults cannot be physically inserted (large classes of typical faults can not be

selected). The effect of (a) is direct. La-ge errors in failure rate prediction (which frequently

occur) result in an incorrect sampling distribution and hence an incorrect prediction ot cd,.nostic

performance (FFD or FFI) from sampled fault insertkns. The effect of (b) is indirect, but has a

potentially serious effect. Since large classes of faults can not be practically inserted, the sample

fault inse .s will omit these faults entirely. While each individual fault that is not sampled may

have a small probab; ty of occurrence, it is quite possible that the sum of the non-insertable faults

dominate the failure rate of the equipment. Thus, even if insertion of all insertable faults were

accomplished and the diagnostic capability correctl) responded in each cases (100 percent correct

insertions), there may st I be a majority of faults to which the diagnostic capability responds

incorrectly. Furthermore, the argument that there is some correlation between the detectability (or

,soiability) of insertable faults and non-insertable faults (and, hence, insertions give information

about detcction/isolation of noninsertable faults) has not.been adequately established. (One can, in

1-8

fact, easily devise a diagnostic system that has 100 percent coverage of insertable faults and less

than 50 percent coverage of actual faults by assuming that only stuck-at faults at a device output are

insertable and using a limited number of test patterns.)

Some current standards do not rely on statistics-based decisions for acceptance or recognize

the limitations of such an approach, and incorporate other tasks that provide the Government with

more assurance that a diagnostic capability will ,,,..:k well. The US Army TPS Procedures

Manual, for example, suggests an acceptance procedure that effectively provides for more

Government involvement in the TPS integration process. It requires correct responses of the

diagnostic capability for essentially all fault insertions. Any failure results in a rework and a

penalty insertion (i.e., an additional insertion is imposed on the contractor as a penalty). In the US

Air Force MATE TPS Verification Guide!i::es, .,.eptance requires not only passing statistical

insertion success criteria, but also acceptar, :e of a TPS integration log book. This log contains the

results of fault insertions and the rework that was done to correct any diagnostic errors. The Army

procedures do not require failure'rate analysis and are therefore u. able to provide any assurances

that the important failure modes (those that occur frequently) are addressed in the acceptance test.

Fa.ure rates, obtained through MIL-HDBK-217 and an FMEA, are applied in the statistical

acceptance criteria in the MATE TPS Verification Guidelines.

MIL-STD-2 165 provides another combination of statistical procedures with other tasks for

testability verification. MIL-STD-2165 relies primarily on MIL-STD-471A procedures for accep-

tance demonstrations, but recognizes the limitations of this and suggests that additional demonstra-

tions oe done to validate the assumptions made in a previously performed test-effectiveness

ana ysis.

f',ally, none of the procedures provide any guidance on product maturation and support.

Such acti' i-,es are becoming increasingly important (General Dynamics, 1987) especially in light

o: the Total Quality Managrment Approach that is currently being institutionalized by DoD.

1-9

TASK 2 IDENTIFY AND DEVELOP NEW METHODS, INCLUDING FAULT

SIMULATION AND INSERTION

Overview

As discussed above and in Sections 2 and 3, accurate, reliable demonstration, in a factory

environment, that specific FFD and FFI requirements have been met (i.e., diagnostic performance

validation) is not generally possible for modern digital electronic equipment. That is, predicted

values of FFD and FF1 that are obtained during fault insertion testing may bear little resemblance to

the actual values of these quantities %k hen the diagnostic capability is fielded and tested over the

operational lifetimes of many devices. In general, this is because at the time ef Government accep-

tance (to which this effort applies) it is not possible to define accurately the expected fielded-system

faults and their rates, and because many relevant faults cannot be practically inserted. This fact has

led to our development of a two-stage approach in the spirit of MIL-STD-2165, in which: 1) a

demonstration is used to verify that functional design requirements have been met (using fault

insertion and emulation techniques) and 2) a diagnostic test-effectiveness analysis is used to

predict performance and discover any design deficiencies. The test-effectiveness analysis can be

used subsequently, if desired, in the development of a maturation plan for the diagnostic capability.

The maturation process is an ongoing one that conceptually begins with the test-effectiveness

analysis, and %,hose purpose is, in part, to validate that the diagnostic performance requirements

(specified levels and confidences for FFD and FFI) are being (or will be) met. In essence, this

two-phase approach employs as may fault insertion demonstrations as are practical (in terms of

time, support equipment required, and risk of damage to the demonstration unit) and uses

simulation and engineering analysis and judgement as backup means for providing the Government

with assurances of the quality of the diagnostic capability being procured. This approach is

discussed in Section 3, with details on the analysis methods given in Section 8. These analysis

methods lend themselN es to both direct and indirect analysis, the latter being wkhere failure effects

are linked from one le'el of indenture to another. It is envisioned that these methods be employed

by starting at the device le%,el, w here simulations are normally used to determine fat-lt coverage of

test patterns.

1-10

Simulation and InsertiGn

There are many considerations that govern the ability to perform fault insertion demonstra-

tions. We have developed several guidelines to aid in the process of defining a meaningful fault

insertion demonstration. These are discussed in Section 6. The more important guidelines are

summarized below:

* Use an engineering prototype with socketed chips if possible. This will permit lead-
clipping fault insertions without damaging a production unit, and facilitates a variety of
other insertion procedures as well.

" Shorting of input and output pins (to each other and to supply voltages and ground) can
be used to simulate stuck-at faults. This must only be done on devices that can handle
the resulting currents without catastrophic failure.

" A break-out box is a hardware device, which may or may not be remotely
programmable, that creates the actual signals that would be produced by a faulty piece
of equipment. Usually, break-out boxes are limited to board-level fault emulation or
higher. The use of a break-out box for chips is technically feasible, and has even been
employed for testability verification in Hummel (1988).

" Fault emulation (software fault insertion) should be employed when no other means of
demonstrating a particular fault class can be feasibly obtained. This method usually
entails modification of test software elements to force certain tests to fail. For example,
an incorrect checksum can be stored in a PROM to force a test outcome that results
from PROM failures to occur. Fault emulation, therefore, provides a means of
ensuring that certain functional requirements of the diagnostic capability have been met
and that the correct diagnostic outcome is obtained when specific test outcomes are
created. Fault emulation is analogous to forced branching of a TPS during TPS
integration.

We recommend that simulations be emploed only as part of the test-effectiveness analysis

task, if possible, and not as part of the demonstration procedure. In using sirn.1atiors for

analysis, it must be recognized that a fault simulation can be inaccurate for a variety of reasons

(including the fact that it may ignore important classes of faults). Simulations should be used only

for analysis, and not for demonstrations, because experimental validation of a simulation's fidelity

(in terms of FFD and FFI prediction) in a factory environment is not practical. This fact is due,

again, to the limitations of fault insertion to validate the simulation.

More detail on fault simulation and fault insertion techniques is provided in Sections 5

and 6, respectively.

1-11

Field Failure Characterization

The objective of one subtask, discussed in Section 4, was to determine if the manifestations

of typical field failures could be characterized at a high enough level (generally at the device, board,

or unit output) so that simple simulation processes or simple insertion methods could be used in

testability % erification. Unfortunately, v. hile much data have been collected about failure rates of

devices, boards, and units, there are few rele,, ant data available that describe the typical fault mani-

festations (at the device, board, or unit leel) that appear in field testing situations. The data avail-

able in the literature tend to be inconsistent from one program or report to the next and are therefore

useful only to point out the types of failure modes that occur. No detailed analyses as to the aver-

age number of pins affected, or other high-level characterizations, are available in the literature.

In general, detailed post-mortem analyses of failed parts are not performed. The parts are

either discarded or, for particularly high failure rate components, they are often returned to the

manufacturer, %% ho then will perform analyses to determine the cause of the failure and the

corrective actions needed. As one might suspect in a competitive industry, information gleaned

from these analyses tends to be proprietary. In this investigation, we contacted the Reliability

Analysis Center (RAC), Raytheon, and various divisions of General Electric. No information

could be found at Raytheon, although if the desired information had been collected, we were told

that it would likely be considered proprietary. Fortunately, as we originally proposed, we were

able to examine maintenance data for the Simplified Test Equipment-Internal Combustion Engines

(STE-ICE) and the STE/ICE-Reprogrammable (STE/ICE-R), portable diagnostic and prognostic

tools built by GE-ASD for the Army (see subsection 4.3). Because GE-ASD is the depot for

STE/ICE and STE/ICE- R, %%e feel these data are representative of the best maintenance information

available in general on fielded military electronic equipment. These data covered the top ten

component failures for two periods: 1989, and the first t%%,o months of 1990. The faults were

classified into ten high-leel modes. For those components whose failure rates were significantly

higher than predicted (via MIL-HDBK-217E parts count method):

1-12

* a larger than expected number of 8K x 8 EE PROMs failed, with the cause traced to

bad workmanship, fault mode unknown,

* the vast majority of IC failure modes are high/low value or gain, or stuck high/low, and

" intermittent faults appear to be the dominant failure mode for switches.

The RAC compiles a database of device faults. The database breaks down device faults

into very broad classes. For some of these classes, typical failure manifestations can be

postulated, although no data are available for determining if such manifestations actually occur.

For VLSI devices, for example, most failures result in "improper output." This suggests internal

faults (since the other cla-ses in the RAC report are shorts and opens on inputs and outputs, and

output latching). Internal faults generally result in incorrect input-output mappings for subsets of

device excitations. There is no way to narrow the failure effects any further.

A short VLSI-device failure mode and effects analysis (FMEA) performed at the RAC

provided relative failure frequencies for different failure modes of different device classes

(Stockman and Rash, 1985). The modes included opens, stuck-ats, and excessive current on input

and output pins (because these are the modes that could be observed). It was indicated, however,

that these modes accounted for no more than about 80 percent of the total fault universe for the

devices. No data are av ailable on the other 20 percent because these faults are the ones in which

the particular fault manifestation could not be identified. From these limited data the conclusion

that we can draw, is that stuck-at fault simulation/insertion on input and output pins probably

account for at least 20 percent of IC failure modes.

Finally, the RAC Field-Failure Return Program provided us with preliminary data on

causes of field failures in electronic equipment (Green, 1987 and 1988; and Green and Denson,

1988). Based on analysis of 63 returned units, they found that field falires include fabrication or

assembly defects (22 percent), electrostatic discharge (ESD) induced effects (40 percent), re-test

OK (RTOK) (20 percent), and non microcircuit (2 percent). Fabrication defects result in too man)

different fault effects for modeling or insertion by a few simple techniques. ESD induced falures,

however, may be frequently modeled by shorts and opens at device inputs and outputs. These

1-13

types of failures can be more readily inserted and simulated and, therefore, should be considered

more strongly in a validation effort. Section 5 discusses these data in more detail.

We have used this information to help guide our fault insertions/emulations in the example

Demonstration Plan given in subsection A.3. Specifically, we perform a significant number of

insertions/emulations on EEPROMs, and insert/emulate a significant number of shorts, opens, and

stuck-ats. Guidelines for choosing the number of insertions and emulations are given in Section 7.

TASK 3 DEFINE PRACTICAL PROCEDURES TO APPLY SELECTED METHODS.

In Sections 7 and 9 we provide detailed guidelines for the preparation of a demonstration

plan and a test-effectiveness analysis report. The demonstration plan provides a recommended

approach that includes specifications of how failures will be chosen and who will choose them.

The accept/reject criteria are quantitative but not statistically precise, since factory validation of

performance is not possible; MIL-STD-471 is therefore not applicable. Section 8 provides

procedures that can be used for test-effectiveness analysis even when significant test overlay

structures (where several tests exercise the same device) are employed or when significant amounts

of test-coverage overlap exist in the diagnostic capability (i.e., the test matrix is "full"). The

Appendix contains an illustrative application of these methods to a modem military electronic unit.

This serves as an example of how the selected methods can be applied.

TASK 4 DEMONSTRATION

The Prognostic Diagnostic Interface Unit (PDIU), a modern Army electronic unit

developed by GE-ASD to perform diagnostics and limited prognostics for the M109E5 Improved

Howitzer, was selected as the demonstration unit a modern Army electronic unit developed by

GE-ASD to perform diagnostics and limited prognostics for the M109E5 Improved Howitzer.

The Appendix gives the details of how our approach was applied to the PDIU's self-test feature.

The use of simulations in the test-effectiveness analysis and the hierarchical nature of the analysis

could not be demonstrated since simulation models were not available for any of the PDIU ICs or

boards, and since the PDIU self-test feature included no elaborate subtesting categories.

1-14

1.4 OUTLINE OF TIlE REMAINDER OF THE REPORT

In Section 2 we present a r, .w of current and proposed methods for testability

verification/validation. In Section 3 we present our approach for demonstration and validation of

diagnostic capability for modem military electronic systems. We argue that validation of diagnostic

performance through factory demonstration alone is not possible. We propose instead two

separate procedures: 1) test-effectiveness analysis to predict diagnostic performance, and 2)

diagnostic design verification to demonstrate that the diagnostic capability performs as designed

through factory fault insertion. In Section 4 we discuss the difficult task of characterizing field

failures, and also present some data on actual field failures. To calculate FFD and FFI we need

actual failure rates, but these are not and can not be known for a new system. MIL-HDBK-217

and similar methods predict failure rates for devices. Using the device failure rates and engineering

judgement we can estimate the failure rate for a given fault class. The data given in Section 4 ma,

assist in such partitioning of device failure rates among the various classes. In Section 5 we

discuss fault simulation and conclude that it is most appropriately used to support the test-

effectiveness analysis, but that the existence of an appropriate simulation for any given diagnostic

capability cannot be generally assumed. In Section 6 we present guidelines for performing fault

insertions during a test-effectiveness demonstration. We present an outline for a test-effectiveness

demonstration plan in Section 7, and present an illustration of such a plan in subsection A.3. In

Section 8 we present two approaches to test-effectiveness analysis, one a probabilistic approach

that assumes the independence of test outcomes, and the other a set-theoretic approach in which

independence need not be assumed. In Section 9 we present guidelines for the preparation of a

test-effectiveness analysis report, describing the application of the techniques of Section 8, and

present an illustration of such a report in subsection A.2. We present a surmnary and suggestions

for future work in Section 10. Finally, in the Appendix we illustrate our approach through its

application to the self-test feature of the Prognostic Diagnostic Interface Unit (PDIU), a modern

Army electronic unit developed by GE-ASD to perform diagnostics and limited prognostics for the

M109E5 Improved Howitzer.

1-15

SECTION 2

ASSESSMENT OF CURRENT VERIFICATION METHODS

2.1 REVIEW OF ESTABLISHED DEMONSTRATION/VALIDATION PRACTICES

In this subsection we review several existing standards that have been suggested for use in

testability verification. While other standards may be appropriate, the ones discussed below

represent a good cross-section of tri-service standards for quality assurance and acceptance testing

for diagnostic systems.

MIL-STD-471A

This is a DoD standard for verification of general maintainability. It was originally

intended for verification and demonstration of maintenance task times. The verification methodol-

ogy requires a stratification of failure events by failure rate. Failure events are then randomly

selected according to this stratification, and the corresponding maintenance tasks are executed. The

time it takes to perform these tasks is recorded and statistical decision criteria are applied to the

results. in 1978 an addendum was provided to extend this procedure to verification of fault isola-

tion and testability attributes. In this addendum, instead of simply selecting fault events and exe-

cuting the corresponding maintenan,.e task, actualfaults must be selected and inserted so that the

diagnostic outcomes of interest (fault detection, isolation, etc.) can be observed (actually, one nec 1

only establish that these outcomes would occur; fault insertion appears to be the most reliable

manner to do this). Again success is determined by simple approximate statistical decision criteria

that are based on estimates of diagnostic performance obtained from the number of successful fault

insertions.

The problem with using this method for verification of modem diagnostic capabilities is the

fact that the actual faults in equipment (unlike the fault events which may be used to drive a

maintenance task-time verification) can not be randomly sampled. This is because many actual

2-1

faults can not be inserted (their insertion is destructive, they occur inside sealed devices, or

insertion procedures are not cost-effective (e.g., delays are required)). If whole classes of faults

are left out for this reason, the success probability calculations that govern the decision criteria can

not possibly be accurate, and acceptance of inadequate diagnostic capabilities (or rejection of

adequate systems) may result. Furthermore, the procedure provides the Government with no

qualitative assurances that the diagnostic capability works properly. For example, there is no

requirement to exercise all aspects of the diagnostic capability (e.g., all branches in a TPS).

MIL-STD-2077

This is a Navy standard for TPS development that includes sections on verification. The

method is similar to MIL-STD-471A in that it requires insertion of actual faults (sampled according

to failure rate distributions) and observation of the response of the diagnostic capability (in this

case a TPS running on some ATE). Thus, the inability to randomly sample due to inaccessibility

or other reasons is still a problem for this standard. The major difference in testability verification

procedures between this standard and 471A is the way in which the number of faults is selected

and the statistical decision criteria that are applied.

US Army TPS Procedures Manual (USA-PMTPS, 1987)

This is a recent Army manual that includes product acceptance test procedures for TPSs.

The acceptance of a TPS centers on its proper operation under normal conditions (go-chain

demonstration) and under fault-inserted conditions. No statistical criteria are set for acceptable

fault insertion performance. Rather, the contractor is responsible for fixing any diagnostic errors

that occur during acceptance test. The fault insertions are also divided into announced (selected by

the contractor) and unannounced (selected by the Government) faults. Only one diagnostic error is

allowed for announced faults. For unannounced faults, a fault insertion penalty is applied for each

diagnostic error and the TPS fails acceptance testing if a certain number of fault insertions in a row

result in diagnostic errors, whether they are fixed or not. The acceptance test plan must also ensure

that all branches of the TPS are demonstrated. Throughout the manual, design documentation,

2-2

formal design reviews, and problem reporting and tracking are heavily stressed. This continuous

Covernment involvement provides a higher level of confidence in the TPS than can normally be

provided by acceptance testing alone.

Since the procedure does not utilize statistical a,..;sion criteria for acceptance, the result is

not unduly influenced by the inability to sample randomly or by unknown failure rates as is the

case in MIL-STD-471 and 2077. However, the procedure gives no indication whatsoever of the

ability of the diagnostic capability to meet its performance goals (FFD or FFI). Also, by not

considering failure rates at all, this procedure may inadvertently ignore testing the diagnostic

capability against the most important failures.

MIL-STD-2165

This is a DoD standard for "testability programs." While the standard focuses on testability

issues in the development of major electronic equipment, the standard can be used as a guide for

the procurement of any diagnostic capability. Tasks in this standard span the entire life-cycle of the

diagnostic capability including program planning, requirements analysis, design (preliminary and

detailed), effectiveness analysis ("testability prediction"), demonstration, and product support.

Two tasks within this procedure are relevant to the testability verification effort: Task 203

(Testability Detail Design and Analysis) and Task 301 (Testability Inputs to Maintainability

Demonstration). As part of Task 203, the standard requires an analysis of the design in terms of

diagnostic performance measures (analysis methods are given in Appendix A of MIL-STD-2165).

Task 301 requires a demonstration of the diagnostic capability (during a broader maintainability

demonstration if necessary). While the task requirements reference MIL-STDs 471 and 2077 for

demonstration planning, the guidelines in Appendix A recognize that such demonstrations are of

limited value in predicting diagnostic performance measures. Therefore, a recommendation is

made to perform experiments during the demonstration that are capable of validating the

assumptions made in Task 203. If necessary, Task 203 should be repeated to get a better

prediction of diagnostic performance.

2-3

The reliance on the statistical decision criteria of either MIL-STD-471 or 2077 for

acceptance has all of the drawbacks discussed in the review of those standards. The guidelines do

recognize this and propose a strategy for using the demonstration to get a more accurate prediction

of diagnostic performance, upon which an acceptance decision could be made. The standard does

not give any guidelines on w hat types of demonstration experiments should be done to validate the

analysis nor does it say how to fold a repeat analysis into the decision criteria. Furthermore, in

many situations, preparation of the initial analysis report may be beyond the scope of the effort,

and repeating this task is almost never done due to limited project scope. In broad terms, this

concept appears reasonable, given sufficient scope in a project. However, when one considers the

type of information that would need to be gathered at the demonstration for analysis validation, the

concept falls short. The major L.,Tors in performing an analysis of diagnostic performance are the

uncertainties associated with failure modes and failure rates, and for modem electronics, the

uncertainty associated with the effectiveness of individual test techniques with respect to actual

component fault modes (e.g., it's hard to quantitatively predict the percentage of memory faults

covered by a checkerboard test (Siewiorek and Swarz, 1982)). None of these uncertainties can be

resolved very well in a factory demonstration. Nevertheless, the performance of both an analysis

task and a demonstration task, arid the idea of trying to validate the analysis in some way, are all

important elements of the testability verification process. In our proposed approach (Section 3),

these concepts are central. Both analysis and demonstration tasks are recommended. New

analysis methods are derived to accommodate modem electronics and diagnostic capabilities, and

validation of the analysis is relegated to the support phase, where the uncertainties of the analysis

may be resolved by longer term observation of the diagnostic capability in operation.

MATE Users Guide (USAF, 1985)
This is an Air Force standard that includes procedures for TPS integration (Section 5) and

Acceptance Test (Sections 6 and 7) and Effectieness and Comprehensiveness Analysis (Sections

8 and 9). The TPS integration phase includes testing of the go-chain, software testing of all TPS

2-4

branches (forced branching), and fault insertion testing as well as other tests (such as ATE compat-

ibility, timing, etc.). In this phase, the TPS and UUT must be comprehensively exercised. The

selection of faults for insertion should account for predicted failure rates, not repeat faults in repeti-

tive circuitry, be as comprehensive as is feasible, include misalignment-type failure modes (i.e.,

inconsistent parameter adjustment within a unit), and exercise as much of the TPS as possible.

Guidelines for selecting the number of fault insertions to be done are given. All steps in the proce-

dure are logged and an analysis of the results is performed At this stage, change proposals may be

made as the result of integration, and these proposals will be approved or disapproved, and if

necessary executed, prior to acceptance testing.

At acceptance testing (Section 6), fault insertions are selected largely according to failure

rate (guidelines are given in Section 7). Random sampling and selection by convenience is dis-

couraged; however, reliance on statistical decision criteria for accept/reject decisions is made.

Detailed figures are given that essentially make the calculations needed in MIL-STD-471 and 2077

easier.

The test effectiveness analysis procedure (Section 8) is similar to MIL-STD-2165 in that it

simply assesses effectiveness by assuming that no testing errors occur. Failure rates of all failure

modes are to be computed. The TPS call-outs are then used to assess figures of merit such as FFD

and FFI, which of course assumes that we can know whether or not a particular test will pass or

fail for each failure mode specified (reasons why this is not known very well are discussed in Sec-

tion 8 of this report). This assumption is recognized in the procedure. It is recommended that the

analysis be used to evaluated TPS "applicability" (i.e., is the TPS capable of achieving the required

diagnostic performance le,,els) and not to predict performance (i.e., will it actually achieve these

levels). Other analyses (Section 9) include assessment of TPS comprehensiveness.

The reliance on statistical decisions for acceptance testing suffers from all of the drawbacks

discussed under MIL-STD-47 1. Again, this type of methodology relies on the assumption that

statistical sampling can estimate diagnostic performance characteristics to within some confidence

level, and that given a desired confidence level, we can decide if the test results >rnply satisfactory

2-5

performance. Since random sampling is impossible in modein equipment and, to a lesser extent,

since failure rates can not be accurately known, the statistical deuision criteria can be quite inaccu-

rate. The integration phase guidelines and the performance of a TPS applicability analysis, how-

ever, can give the Government substantial assurances that the "li - is constructed properly. As will

be seen in Section 3 of this report, our approach brings many of the integration tests to the accep-

tance test. New analysis methods are provided that are more approl.iate to prediction of diagnostic

petformance. However, the inclusion of a test applicability analysis is also included as an option.

2.2 OTHER SUGGESTED APPROACHES

Many suggestions have beea made to handle the drawbacks associated with accurate

statistical validation of diagnostic Ix)Iormance. In this subsection, some of these suggestions are

reviewed. Some of the suggestions have appeared in the open literature, while others have been

developed in the course of this effort. The suggestions include methods to deal with unknown

failure rates for individual modes of components and to deal with fault insertion problems.

While these approaches may address one or more of the problems we have discussed, none

address all problems simultaneously, nor does any combination of these approaches. This is

because each approach takes the view that direct validation of diagnostic performance by factory

demonstration is possible. We shall argue in Section 3 that this is not the case, and devise an

approach that views testability validation as an ongoing process that is supported by acceptance test

demonstrations, but should start during the design phase with test effectiveness analyses and

continue throughout maturation of the diagnostic capability.

APPROXIMATION OF FAILURE MODE RATES. This method addresses the problem of

devising failure rates for different modes of a component when only a single rate is available for

the component itself (e.g., via MIL-STD-217). It suggests that failure mode rates be approximated

by dividing the failure rate of the device into equal parts. This implies, however, that accurate

device failure rates are known, that we can determine the total number of failure modes of a

particular device, and that there are no "bad actors."

2-6

FUNCTIONAL DEFINITION OF FAILURE MODES. This method addresses the problem of

knowing all failure modes. It suggests that failure be defined as the inability to perform each

function of a device or board or RU. There are many drawbacks to this approach. First, and most

important, is the fact that for modern digital equipment, FED (and FFI) is determined by whether

or not the test patterns appearing at the inputs of a device (or board, or RU) are extensive enough

to cause a physical fault to be manifested as some functional failure. The insertion of functional

failures can, by definition, emulate only those physical failures that are in fact manifested. As a

result, this approach virtually guarantees that 100 percent of the inserted faults will be detected (or

isolated in accordance with the required ambiguity specifications) independent of the true

percentage oi suL,-essful results that would be obtained in the field. Other problems include the

inability to determine failure rates accurately for each functional failure mode, the difficulty of

determining the various different manifestations of functional failure for each function, and the

inability to insert or emulate the failure manifestations at the accessible points in the system.

BEHAVIORAL DEFINITION OF FAILURE MODES. This method addresses the problem of

inaccessibility of faults for insertion. It suggests that faults be grouped according to their

behavioral effect at accessible points in the system. Fault insertion then amounts to finding ways

of emulating this behavior at the accessible points. There are several problems with this method.

First, and most important, is the difficulty of determining the behavioral effects of the various

failure mechanisms. Such determination is called for in many existing standards through use of an

FMIEA. However, FMEAs become impractical when circuit size is large, and this is the trend in

modern equipment. Development of standard failure effects for standard circuits and devices

would help this prozess in man, cases; however, the increasing use of application-specific ICs

(ASICs) implies that an FMEA is needed at least to assess the effect of cell faults at the ASIC pin

level and higher. Also, standard failure effects for standard device or cell functions may be an

elusive goal since failure effects depend more strongly on devke topology than does the functional

behavior of the device. Also important is the major issue raised in the functional definition of

2-7

fa!!ures, namely the inability to consider faults that do not cause observable effects for the set of

test pattern inputs that are applied during teting. In addition, it is not always the case that

behavioral effects at accessible nodes can be practically inserted (e.g., the effects of some faults

may be delays, which can be difficult to emulate). Also, the failure rates associated with these

behavioral-level faults is still difficult to determine (especially considering the fact that there may

not be a one-to-one mapping between actual physical faults and the behavioral fault classes).

These problems notwithstanding, the insertion or emulation of faults at the accessible points in a

circuit remains the best way to demonstrate diagnostic capability (even though formal validation of

performance measures such as FFD and FFI cannot be accomplished in this way alone).

2-8

SECTION 3

PROPOSED APPROACH TO DEMONSTRATION AND VALIDATION
OF DIAGNOSTIC CAPABILITY

3.1 MOTIVATION

From the discussions in subsections 1.3 and 2.2, it can be seen that most of the problems

with existing methods revolve around the inability to define accurately and to insert the relevant

faults (either fault mechanisms or fault effects) in a system and the inability to determine reliably

their rates of occurrence. From extensive literature review and discussions with diagnostic system

designers, it has been determined that these difficulties can not be surmounted by any practical

means. That is, reliable validation of diagnostic performance can not be accomplished through

direct demonstration alone because the key elements (the important faults and their rates) can not be

known with great enough accuracy, and because of the inability to perform truly random

insertions. Nevertheless, diagnostic demonstrations are a vital tool in the broader process of

assuring the quality of diagnostic capabilities. The approach discussed below recognizes the

limitations of direct demonstration and attempts to satisfy the broader objective of diagnostic

quality assurance through a combination of direct demonstration and qualitative and quantitative

design analyses. The view is taken that acceptance testing is the bridge between the design and

maturation phases of diagnostic development. As such, it is important to engage in activities that

determine that the diagnostic capability was constructed properly and to predict its performance in

the most precise quantitative manner possible. This latter process must recognize that reliable

lifetime failure rate and failure mode data are in general not available at the time of acceptance

testing. Therefore, it concentrates on an analysis of the effectiveness of the diagnostic design

using the data that are available at the time. Ideally, this analysis can provide insight into potential

problem areas, such as critical failure modes relative to the overall diagnostic requirements or

3-1

goals, which can be addressed as the electronic equipment matures and more data become

available.

The narrow view of the testability validation process, and the objective of this effort, is to

ensure that the government procures only equipment with diagnostic capabilities that, with high

likelihood, meet their specified performance requirements (FFD and FFI for example). In broader

terms, however, the validation process is only a part of a larger diagnostic development and

maturation process whose overall objective is to ensure that Government-procured weapon

systems have high quality diagnostic capabilities. In recent years, a Total Quality Management

(TQM) approach (Lochner, 1989; Gruska and Heaphy, 1989) has evolved to ensure that quality is

designed into and continually improved upon throughout the life of a product. The proposed

approach discussed in this section follows the TQM principle of continuous improvement. The

approach does not attempt to guarantee that specific measures of diagnostic performance will be

met when the diagnostic capability is fielded (which, as we have discussed, can not be done

accurately). Rather, it attempts to:

0 verify that the diagnostic capability correctly implements its documented functional
design specifications (modified, where necessary, by the results of an independent test
effectiveness analysis), and

* start the diagnostic performance validation process, which can also be used as the first
step in the entire system's overall maturation process, if desired.

As discussed in subsection 1.1, we have defined verification and validation in precise

terms. The objective of verification is the determination that a diagnostic system's implementation

is faithful to the documented functional design specifications (e.g., test A will detect fault wode x

of component y in z seconds). The objective of validation, on the other hand, is the determination

that the functional design is actually capable of meeting the performance requirements (e.g., FFD=

x ± y %) that have been levied upon the product.

For most systems, including diagnostic systems, verification can be accomplished by

demonstrating that the product correctly perform. each of its intended functions. Additionally,

some systems can also be valUdatcd by demonstration testing (for example, equipment reliability

3-2

can be validated by accelerated life-testing, and maintenance task times can be validated by

measuring task performance times under various ,onditions). Modem diagnostic capabilities,

however, are not amenable to direct validation by dernonstratioin testing.

As discussed in subsection 1.2, the main problems with validition of diagnostic systems by

demonstration testing are: 1) the limited ability to perform fault insertions, 2) the inability to antici-

pa'e all failure modes and 3) the inaccuracy of the prediction of failure rates for fielded failure

modes. Once a diagnostic capability is fielded, hov, ever, actual faults occur with measurable failure

rates. If the appropriate performance monitoring, data collection, and feedback activities are estab-

lished before field operation (or before operational testing) this actual experience can be used to

continually validate, reevaluate, and "mature" the diagnostic performance. To establish such activi-

ties, one must analyze the system under consideration to determine what data should be collected

and what should be done with it. Thus, the first step in a maturation process might be called vali-

dation anal)sis. The objectives of such an analysis are a quantitative and qualitative assessment of

Lhe diagnostic capability's performance abilities. The quantitative assessment is designed to predikt

approximate diagnostic peiformance measures (such as FFD and FFI). These predictions may then

sen e as benc-hmarks for comparison of actual field performance and may also provide a means for

assessing the approximate performance impact of potential design changes. The qualitative assess-

ment is designed to document the detailed diagnostic capabilities and limitations. This type of quali-

tative assessment should stimulate consideration of potental changes for improved performance,

and provide a systematic means for unco-,ering design flaws that might limit performance.

3.2 OVERVIEW OF APPROACH

The proposed approach to ensuring high-quality diagnostic capabilities follows the above

discussion and therefore requires tvo separate acti,, ities: a validation analysis and a verification

demonstration. In the following discussion, an o, erview of the requirements of .ach of these

activities is given.

3-3

3.2.1 Requirements for Diagnostic Demonstrations-Verification

The objective of system verification is to demonstrate that the documented functional

requirements of the s)stem of interest ha,,e been properly implemented. The main functional

requirement of all diagnostic capabilities is that a predetermined set of indicators of system

operational status (e.g., Go, No-Go, various fault codes for isolation, etc.) be correctly produced

under a variety of system malfunction states (including the no-failure state). Thus, to verify a

diagnostic capability, we must be able to cause the equipment to behave as it would in the various

system operational sta:es and %&e must demonstrate that the correct diagnostic outcome is produced

as a result. Therefore, the verification process is a (physical or software) fault insertion

demonstration.

Now, because %we are treating the fault insertion demonstration as a verification process, the

selection of faults and the percentage of those that are successfully demonstrated are not determined

by probabilistic analy sis of a random sampling process (as is the case with many current methods).

Rather, we first require that fault insertions be conducted so that every diagnostic outcome is

produced at least once (e.g., all paths :1 a TPS must be tested). Secondly, we require that as many

as possible of the system malfunction states for which the diagnostic capability was designed be

created or emulated in some way. This is not to imply that all faults must be inserted. Faults may

be aggregated into classes of similar types, and then at least one of each type considered in the

demonstration if possible. Howe, er, it is important that particularly troublesome or questionable

capabilities emerging from the % alidation analysis be thoroughly demonstrated. If physical

insertion of a fault can be done, it should be done. Othcrwise, some means of emulating faulty

behavior should be devised.

For example, consider a simple microprocessor-based system with CPU, RAM, and bus

components. A power up test might in%,olve testing of each CPU instruction, the ability to read and

write to RAM, and the ability of the CPU to communicate over the bus. There are two diagnostic

outcomes, PASS and FAIL. To demonstrate performance of the diagnostic capability, we must

demonstrate that the PASS indication (whatecr it might be) is produced when the system is in a no-

3-4

fail state, and that the FAIL indication is produced under a variety of system failure states. Since the

power-up test checks the CPU instruction set, failures that result in each of the instruction's produc-

ing incorrect results should be either inserted or emulated (e.g., an incorrect result could be used in

the diagnostic prog.am). Similarly, bus failures should be demonstrated (perhaps by shorting or

opening pins on various chips) and memory faults should be demonstrated (perhaps by backdriving

memory chip pins if possible). The guideline for determining what types of faults must be inserted

or emulated should be the document that describes the types of faults for which the diagnostic capi-

bility should correctly respond. If for example, the contractor claims that CPU timing faults can be

detected, then such errors should be demonstrated as part of this process (if possible).

Since the point of the verification process is to demonstrate that functional requirements are

met, success can only be obtained with 100 percent successful demonstration results. Thus, fail-

ure to correctly produce the correct diagnostic outcome under any of the fault insertion or emulation

conditions will require ultimately that the diagnostic capability be redesigned so that the correct out-

come is obtained. This should occur before the Government accepts the product or, alternatively,

a plan for mitigating an error may be established. The decision as to which event takes place

depends on the potential impact of the error, which should be approximately determinable by

reference to the validation analysis (see subsection 3.2.2). At a minimum, a plan for monitoring

performance and establishing the impact of any errors encuantered during the demonstration must

be established prior to the demonstration.

Finally, the demonstration activities must ensure that the verification process is both effi-

cient and fair. General industry practices such as those in USA-PMTPS (1987) form the basis for

the proposed activities (see Section 7 for more detailed guidelines). The basic elements of these

practices include:

" Successful demonstration of operation for no failures,

* A list of demonstration faults chosen by the contractor for demonstration,

* A list of demonstration faults from which the Government may choose,

* Eventual rectification of all problems uncovered in the demonstration, and

3-5

* A penalty system that requires the contractor to do more demonstration work for poor

demonstration results.

The way in which these practices are implemented varies consilerably. This is because

most procedures are contractor established as part of an acceptance test plan. Thus, the Govern-

ment need only ensure that all of the basic elements listed above are present in the demonstration

plan prepared by the contractor. (The procedures detailed in Section 7 may therefore be considered

as a suggested approach that embodies these basic elements).

3.2.2 Requirements for Diagnostic Performance Analyses-Validation

The intent of validation is to determine if the functional design of a system is capable of

achieving the desired system-level performance measures. At the acceptance test phase for diag-

nostic systems, this can only be accomplished in an approximate manner through analysis. This is

because the relevant faults and failure rates are unknown at this stage and because random sam-

pling of faults is not possible when many potentially relevant faults are inaccessible. Since accep-

tance test validation should be the first step in the maturation process, it is important that the analy-

sis not only produce approximate predictions of diagnostic performance, but also provide some

insight into the system design so that design flaws may be uncovered and engineering changes for

improved diagnostic performance may be found.

In Section 8 we present a fault accountability theory that can be used to satisfy the perfor-

mance prediction requirement of validation analysis. This theory was constructed so that the pro-

cess of collecting diagnostic design information to produce these predictions would hopefully yield

enough insight into the design to uncover design logic flaws. In Section 9, specific suggestions

for a validation analysis document are given.

The proposed validation analysis methodology centers on a fault accountability analysis. In

this analysis, the primary system is decomposed into separate "fault classes" and the diagnostic

capability is decomposed into individual "tests." Fault classes can be thought of as disjoint sets of

physical faults, and they should be constructed from a physical (not functional) decomposition of

the system. Fault classes may may or may not include diagnostic hardware depending on the

3-6

desired definition of the performance measures. Tests may include individual steps in a test

program, operation of individual BITE functions or groups of test program steps and/or BITE

hardware operation. Each test has two or more outcomes (usually two: pass or fail). The analysis

method is constructed so that more accuracy is obtained when more detailed decomposition of both

the primary and diagnostic capability is performed. (Subsection A.2 contains an illustrative fault

accountability analysis.)

The information that must be gathered for the analysis is an accounting of the faults that

cause the various outcomes of each test (actually all but one outcome must be considered); hence

the name fault accountability. As in Siewiorek and Swarz (1982), this accounting can be qualita-

tive or quantitative. A qualitative acc-unting simply lists the fauit types that can cause the various

test outcomes to occur. Quantitative accounting is usually based on a single-fault assumption and

is an attempt to specify the fraction of faults from each class that could cause each test outcome to

occur. Quantitative accountability can usually only be approximated. Good approximations can be

obtained if simulations can be used. (For example, a single test for our purposes might consist of

application of a large set of test patterns to a combinational logic chip and the comparison of the

actual output with stored output results; the set of patterns can be analyzed for fraction of stuck-at

(s/a) fault coverage quite readily by a variety of simulation and fault grading (i.e., fault-coverage

estimation) techniques (Agrawal and Seth, 1988).) In the case where a test is actually a previous

accepted diagnostic capability (e.g., an entire ASIC on-chip BIT), the results of the validation

analyses performed for that capability may be used directly. In most situations, however, engi-

neering judgement must be used to estimate quantitative accountability (e.g., the percentage of all

faults covered by tests that are designed only for stuck-*at fault coverage). It is the necessity of

relying on engineering judgement that makes the analysis approximate.

The proposed methodology for validation analysis includes both qualitative and quantitative

accountability documentation. The quantitative accountability figures will allow calculation of

overall FFD and FFI, once the decision logic for the various diagnostic outcomes is specified. If

qualitative accountability includes both faults that are "covered" and faults that are not covered by

3-7

each test, then it can provide backup for engineering assessments of quantitative accountability.

Also, the exercise of determining qualitative accountability at this level of detail should provide

diagnostics engineers with insights into potential logical flaws in their design or potential

improvements to it. A side benefit of the quantitative analysis is that it provides a database from

which fault isolation algorithms can be devised.

From the quantitative accountability information, overall FFD and FFI can be calculated

only after specification of the decision logic used to generate each of the various diagnostic

outcomes. The decision logic describes the relationship between the test outcomes and the overall

diagnostic outcomes. Section 8 provides more details on how the decision logic and quantitative

accountability can be used to determine overall FFD and FFI. The analytic results provide bounds

on FFD and FFI that account for the possibilities of overlapping test coverage of unknown extent

and nondisjoint fault classes with unknown common faults. The tightness of the bounds depends

on the depth to which the diagnostic capability and the fault classes are decomposed. In the limit

where all tests either cover all faults in a fault class or don't cover any faults in a class (i.e., either

100 percent or 0 percent of faults in a class can cause each test outcome, respectively) and where

all fault classes are disjoint, FFD and FFI can be computed precisely (if not accurately due to the

approximations of failure rates).

Finally, we note that the fault universe of interest depends on the particular definitions of the

measures FFD and FF. For example, if FFD and FFI for mission critical faults are of interest, then

the fault universe must be determined by a fault modes effects and criticality analysis (FMECA).

3.3 SUMMARY

The view has been taken that testability validation is a part of a broader development and

maturation process intended to ensure that high-quality diagnostic capabilities are procured by the

Government. When the demonstration of the diagnostic capability is conducted, the development

process ends and the maturation process starts. The proposed approach is two-part: it consists of

a validation analysis, which, ideally, is the first phase of the maturation process that follows, and a

verification demonstration, which is the final phase in the development process. Validation

3-8

analysis is intended to give a coarse prediction of diagnostic performance and to provide insight

into the design for uncovering logical design flaws, critical assumptions, and potential

improvements. Verification is intended to demonstrate that the functional design requirements of a

diagnostic capability have been implemented correctly.

It must be understood that some systems mus, work correctly at acceptance
either because their failure is life threatening, or because there can be no
changes after acceptance due to Lack of funds. In the first case, maturation
is limited and in the second case, consideration of maturation is useless. In
any case, maturation is no cure for an unacceptable product.

3.9

SECTION 4

CHARACTERIZATION OF FIELD-LEVEL FAULTS IN ELECTRONIC EQUIPMENT

In this section, we discuss different ways of characterizing faults in electronic equipment

and provide an overview of published literature on the likelihood and modeling of various faults.

The focus is on boards containing digital devices. This section is motivated by the following

testability verification concerns:

0 In order to insert meaningful faults in electronic equipment, we must know the effects
of field-level faults at the accessible points in the circuit, since fault insertions can be
accomplished only at these locations.

0 The testability verification process is most relevant when the failures that are most likely
to occur in fielded systems are considered.

0 When analyzing a test system for detection and isolation effectiveness, guidelines that
tell the analyst the types of failures that are "covered" by different testing schemes are
needed. Faults must be aggregated into classes in order to make these guidelines
usable.

* Modeling of faults is necessary for determining how to insert faults for testability
demonstrations and for simulating faults when analyzing test-system effectiveness.

In the following, we present an overview of recent literature on physica, fault mechanisms

and their effects. The discussion focus is primarily on circuit boards containing digital VLSI

devices and on failures that can occur in the field. We also discuss in subsection 4.3 results of an

examination of actual field faults from the STE/ICE and STE/ICE-R, two generations of diagnostic

and prognostic O-level tools developed for the Army by GE-ASD.

Field failures consist of: 1) manufacturing failures that are not detected during production

screening and hence are present when the equipment is delivered, and 2) failures that are induced

during equipment operation. Induced failures, in general, are caused by environmental and

electrical stress, equipment wear-out, and human-related problems.

1

4-1

4.1 FAILURES IN ELECTRONIC EQUIPMENT

System faults are composed of faults that cause incorrect functional operation of the system

elements (e.g., boards), faults in the interconnections between these elements, and faults in

connectors (the interface between a board and the board-interconnection system).

Board-level faults can be broken down into board-interconnect faults, failures of discrete

components (resistors, capacitors, etc.), internal chip failures, and connector failures (the interface

between a component or a chip and the component-interconnect system).

Circuit boards and systems vary greatly in terms of their component composition and

functional capability. As a result, it is not really possible to make meaningful general statements

about system or circuit board failure modes.

To see that this is the case consider the study of Air Force avionics in Wong et al. (1987).

In this study, integrated circuits appeared to contribute significantly (20 percent - 40 percent) to

causes of equipment removals while only 1 percent- 2 percent are due to connectors. In contrast,

the study in Zins and Smith (1987) determined that IC components were involved in less than 2

percent of all avionics failures, while over 60 percent Yere due to connectors and cabling. The

discrepancies in reports such as these are due to the fact that the characteristics of the boards being

studied are drastically different. In more precise terms, neither study accounted for the

independent" variables that can affect the failure distributions. For example, Wong et al. note that

magnetics accounted for very few failures because the boards contained very few magnetic

components. Thus, it is evident that their results do not extrapolate to boards that are composed of

larger portions of magnetic components. The distribution of component types, environmental

factors, screening levels, and design issues are all independent variables that can affect the field

failure distribution of modem electronics (Stockman and Rash, 1985). Studies that adequately

account for such variables could not be located for this effort. (The closest is Rossi (1986), where

failure rates of various integrated circuits are tabulated as a function of environmental and screening

factors. Failure modes are not considered).

4-2

Anecdotal evidence (Anderson, 1989; Zins and Smith, 1987; Wong et al. 1987) suggests

that connector faults can be a major cause of high RTOK rates. This is because many diagnostic

capabilities do not consider faulty connectors or interconnects as relevant fault modes. As a result,

the connector or interconnect fault is correctly detected by most diagnostic capabilities, but

incorrectly isolated to a board or chip that is functional. When the board or chip is tested at the

next level of maintenance, it is found to be operational, resulting in an RTOK.

4.2 FAILURES IN DIGITAL VLSI DEVICES

Since the use of digital VLSI devices in modem electronic equipment is increasing, it is

logical to assume that the majority of system and board failures are either due to digital VLSI

device faults or connections and interconnects. Since digital VLSI will play an important role in

future electronic systems, this section provides a brief overview of VLSI device failure mech-

anisms and their effects. This area has been studied extensively and we present only the salient

features here.

4.2.1 Physical Fault Mechanisms in VLSI Devices

We consider VLSI devices constructed in bipolar, MOS, and GaAs technologies. Bipolar

technology has been used in older VLSI devices. CMOS is presently the most prevalent technol-

ogy, allowing much greater chip densities. GaAs is now being used to attain higher speeds in

VLSI and VHSIC devices.

Recent descriptions of failure mechanisms are given in Mangir (1984), Wadsack (1978),

Maly (1987), Ghate (1982), Green (1987 and 1988), and Green and Denson (1988). In Maly

(1987), electron micrographs of damaged ICs obtained from fabrication testing showed damaged

metal lines due to spot defects (contamination and unexposed and scratched photoresist). Most of

these faults result in catastrophic failures that are ,ery likely to be detected during initial screening

of a device, and hence, are unlikely to show up in fielded units. Metal corrosion, while rare

according to Maly, is the only mechanism citcd that can not be screened, and thus shows up during

4-3

fielded operation. Therefore, metal corrosion may be a likely field fault mechanism. Metal

corrosion causes open circuits and increased resistive paths within a VLSI device.

Electromigration is another defect mechanism that can arise during field operation (Ghate,

1982; Ho, 1982). Electromigration is the transport of metal due to an impressed DC electric field.

Metal lines on VLSI dexices can be shorted due to electromigration. Electromigration can severely

limit circuit densities since, for a given migration growth rate, closer lines will be shorted together

in less time. Electromigration is affected by current density (high currents and/or thin lines are

susceptible) and temperature. New alloy films are being developed that are less likely to

experience electromigration. No evidence could be found to determine the relative importance of

electromigration-induced faults in fielded IC units.

In Mangir (1984) these and other fault mechanisms are discussed. For fielded devices the

important mechanisms (not discussed above) include random changes of state due to exposure to

alpha particles and other ionizing radiation, shorts between metalizations d.ie to oxide breakdown

from static discharges, transistor threshold shifts due to hot electrons, shorts between diffusion

regions due to charge spreading, and line coupling and charge loss (memory devices) due to

degradation of insulator quality from extended use. Temperature is also cited as a cause of VLSI

device failures, but specific physical effects on the device are not given. All of the mechanisms

presented above result in permanent faults except a portion of faults due to radiation, which result

in transient errors (Anderson and Binari, 1983), and some modes that result in "soft memory

failures" (Sie et al., 1977).

According to Denson and Brusius (1989), the dominant failure modes in VHSIC devices

include dielectric breakdown, mechanisms that result in latch-up effects, electrical overstress and

package related problems (functional failures, input or output leakages, wire bond failures, etc.).

The relative importance of VLSI/VIISIC failure mechanisms in fielded units is now being

studied in the RAC Field Failure Return Program (Green, 1987 and 1988; Green and Denson,

1987, Stockman and Rash, 1985). A preliminary analysis suggests that about 20 percent of the

identifiable faults are due to IC design or fabrication errors (i.e., defects that were present on

4-4

delivery, but passed screening tests) and about 40 percent are caused by electrical overstress

(EOS). EOS and electrostatic discharge (ESD) faults were evidenced by broken bond wires, and

cracked dies and other obvious defects. Note that the percentages given above are for those

failures that could be identified; no indication of the numbers of failures that couldn't be identified

has been given.

Finally, Table 4-1 shows a VLSI fault mode distribution where the percentages are, again,

given for those faults that were identifiable. The source data for this table was Stockman and Rash

(1985), while the form of the data is due to Denson (1989).

TABLE 4-1. IC FAILURE MODE DISTRIBUTION SUMMARY

MOS DIGITAL % INTERFACE %
Input Open 33 Output stuck low 59

Output Open 33 Input Open 16
Excessive Input Current 10 Output Open 16

Supply Open 10 Supply Open 10
Output Stuck High 7
Output Stuck Low 7

BIPOLAR DIGITAL % MOS MEMORY %
Output Stuck High 23 Data Loss 79
Output Stuck Low 22 Dynamic Characteristics 8

Input Open 17 Input Open 6
Output Open 16 Output Open 6

LINEAR % BIPOLAR MEMORY %
Input Offset Voltage (out of spec) 63 Dynamic Characteristics 79

Output Stuck Low 37 Data Loss 21

4.2.2 Models of the Effects of VLSI Device Faults

The above subsection discussed several physical causes of VLSI device faults. In this

subsection, we discuss the effects of these faults. The effects of the physical fault mechanisms

can be described at various levels. Ultimately, we are interested in describing fault effects at

device pins since these are the only observable/accessible points on the (1ip. However, it is

instructive to review models for lower levels in order to understand the basis for the higher-level

characterizations. In the remainder of this subsection, we consider fault models at the transistor

level and at the gate level. We then discuss fault effects at the chip level for various device types.

4-5

In Timoc et al. (1983) and Galiay et al. (1980), transistor-level fault models consist mostly

of shorts and open3 between connections to a transistor. Both shorts and opens are described

generically as increased and decreased resistances between transistor connections. (Note that

failures of metal interconnection lines can also be modeled as shorts (between adjacent lines) and

opens.) In TIL bipolar transistors, excessive emitter-collector current is also possible. In MOS

technology, opens are sometimes incomplete, causing RC coupling to a transistor gate resulting in

slower rise times. Also, oxide-affecting faults can cause transistor threshold changes. From an

electrical point of view, these transistor faults can result in many different types of behavior as

follows.

TTL Bipolar Circuits:

" Shorts between gate output transistors can result in wired-AND behavior (Timoc et al.,
1983).

" An open fanout stem or branch results in s/a 1 behavior (Timoc et al., 1983).

" Excessive collector-emitter leakage may result in multiple s/a behavior depending on the
gate topology (Timoc et al., 1983), while other leakage faults have indeterminate
behavior that can only be detected by changes in the supply current (Malaiya and Su,
1983).

MOS Technology:

* Shorts between outputs of gates may be modeled by any of 4 different types of
asymmetrical wired-logic functions depending on the details of the gate topology (i.e.,
what other gates are connected to the gates that are shorted) (Timoc et al., 1983).

" Incomplete opens can be modeled as a delay (Timoc et al., 1983; Abraham and Fuchs,
1986).

* Threshold changes, open gates, and some short modes can be modeled as stuck-at 1 or
0 faults since they prevent the transistor from being turned on or keep it turned on
(Timoc et al., 1983; Galiay et al., 1980). Some s/a faults occur only after some delay
from turn-on (Case, 1976).

* Some open transistor failures cause line capacitance that results in sequential behavior
(called a stuck-open in (Wadsack, 1978)) (Timoc et al. 1983; Galiay et al., 1980;
Agrawal, 1988).

• Breakdown of insulators can result in line coupling (Abraham and Fuchs, 1986),
especially at higher circuit densities.

4-6

In Cunningham et al. (1987) GaAs technology faults are considered. Fault mechanisms are

similar to MOS fault mechanisms. Instead of characterizing the faults at the transistor-level, how-

ever, simulations of interconnected transistors making up different gate types are done v ith SPICE

(Nagel, 1981). The SPICE fault models include transistor threshold changes and decreased and

increased resistance values between transistor connections. For example, they conclude that

inverter faults can be modeled as: a) stuck-at, b) asymmetric and symmetric delays (rise times and

fall times may be different), or c) indeterminate voltage levels. They do not consider how these

fault modes may change when gates are connected to each other.

At the gate level, the most common failure mode is the stuck-at zero or one fault model. As

its name implies, a stuck-at fault consists of a gate input or output being permanently set to logic

voltage levels of zero or one. In test analysis, the single stuck-at fault model is frequently used.

However, it is widely known that the single stuck-at fault model falls short of characterizing all

faults (Mangir, 1984; Abraham and Fuchs, 1986; Galiay et al. 1980; Maly, 1987; Cunningham et

al. 1987; Agrawal, 1988; Breuer et al. 1983a; Fujiwara, 1985). Furthermore, not all s/a faults at

the gate level can physically occur (Maly, 1987). If one includes multiple stuck-at faults many

more physical faults are represented (Breuer et al. 1983a; Maly, 1987). Some modeling schemes

also include timing information, thereby allowing delay faults to be modeled (e.g., see Hayes

(1985), Carter et al. (1987), Devadas (1989)). Unfortunately, there are many faults that can not be

generically described at the gate-level. These are mostly caused by shorts that change the desired

function of a gate, or can cause a change in the function of a group of gates (Cunningham et al.,

1987; Galiay et al., 1980; Mangir, 1984). Since the effect of faults depends on the layout of the

device and the specific gate topology, it is difficult to decompose these faults any further (except

for the wired-logic behavior described above). In fact, it is even possible for a combinational

circuit to become sequential due to certain fault modes (Galiay et al., 1980).

At the pin level of a chip, some general statements about fault effects on VLSI devices are

now made. For certain regular structures such as programmable logic arrays and memories, more

detailed fault models are discussed.

4-7

In all ICs, pins may be open due to broken bond wires. In one survey of RAC data

(Stockman and Rash, 1985), between about 30 percent and 60 percent of classifiable failures were

classified as input or output opens.

Stuck-at faults on output lines, of course, cause stuck-at failures at the corresponding pin.

Stuck at faults on internal lines, however, will not result in such consistent behavior. In combina-

tional logic circuits, all we can say in general, is that for a given stuck-at fault, there is an input for

which the output is incorrect. Notice that many inputs may result in correct outputs even though a

fault is present (this is what makes test vector generation and achievement of high fault coverage

for VLSI devices difficult). This is also the case for failures (non stuck-at) that cause the function

of the circuit to change (such as the wired-logic behavior of certain shorts discussed above). Fail-

ures that turn combinational circuits into sequential ones result in incorrect outputs for only certain

inputs as well, but the occurrence of an incorrect output now depends on the sequence of inputs.

As a result, a single input pattern may result in either correct or incorrect output patterns depending

on the sequence of inputs previously applied. This is also true for stuck at faults in bequential

circuits. Delays at the gate level result in response delays of the entire circuit, and finally, leakage

faults can result in excess supply currents (Malaiya and Su, 1983) as seen from the supply pins.

Memory Devices

Memory devices (RAM, ROM, PROM, etc.) are highly regular structures that perform very

well defined functions. As a result, we can be more specific about their modes of failure. In

Agrawal (1988), memory faults are decomposed into parametric and functional faults. Parametric

faults include low output levels and inadequate fan-out driving capabilities (due to sense-amp

problems), slow access times, and loss of data. Functional faults include one or more memory

cells being stuck at one or zero, coupling between memory cells and the inability to store or retrieve

certain patterns (pattern sensitive faults). In Micro Control Company (1981) memory faults are

also described. Pattern sensitive faults are discussed in detail in Franklin et al. (1989). Frequently

the sensitivities are caused by certain cells that are affected by the values in their neighboring cells

4-8

(in the same row or in the same column). Soft failures in d),namic RAMs that result in intermittent

data changes are discussed in Sie et al. (1977).

In Stockman and Rash (1985) there is evidence that 80 percent of the identifiable faults in

bipolar memories result in dynamic characteristic errors (e.g., access time reduction), vhereas for

MOS memory devices 80 percent of the identifiable faults result in data loss.

Programmable Logic Arrays (PLAs)

PLs are also very regular devices that can be thought of as a matrix of lines with transistor

connections existing between some of the lines to define the desired inputioutput combinational

logic. In Agrawal (1988), three fault types are considered; I) stuck-at one or zero on the inputs,

input inverters, product lines or outputs, 2) crosspoint faults in %% hich a single transistor is added

or missing, and 3) bridging faults in which shorts between adjacent lines occur, resulting in wired-

logic behavior (type of wired- logic depends on the technology of the PLA). The effect of all of

these faults is either a stuck output or, more likely, a change in the circuit function being imple-

mented. The gate-level s/a fault model is sometimes used to pre-:t the effects of PLA faults, but

this is frequently inadequate for crosspoint and bridging faults (Chang and Abraham, 1987). In

Chang and Abraham (1987) a "personality matrix" is used to more accurately predict the faults on

PLAs and ROMs. Note that crosspoint failures can occur in the field since every crosspoint has a

device, whether or not it is used. In Fujiwara (1985) it is claimed that most crosspoint faults can

be modeled as stuck-at faults in the two-level AND-OR !ogic implemented by the PLA.

Microprocessors

While the microprocessor is far from a regular structure, it does have a well-defined

function. .xczording to Agrawal (1988) some success has been obtained in decomposing

microprocessor faults into five classes: 1) register address decoding, 2) instruction decoding,

3) data storage, 4) data transfer, and 5) data manipulation.

4-9

4.3 EXAMINATION OF ACTUAL FIELDED-EQUIPMENT FAULTS

In this subsection we review a study of actual field faults for the STE/ICE and STE/ICE-R,

two generations of diagnostic and prognostic O-level tools developed for the Army by GE-ASD.

As the depot repair facility for STE/CE and STE/ICE-R, GE-ASD maintains for "- Army a

system to track the testing of field failure returns.

Whenever a failed unit (UUT) is tested, the results of the test are manually entered by a test

technician on a UUT Test Result form, and subsequently entered into a computer database in a

coded/abbreviated manner. (A blank form is shown in Fig. 4-1, and an example of a filled-out

form is shown in Fig. 4-2.) Since the content and accuracy of the database are dependent on the

tester who enters the data, the result forms are used primarily as a vehicle to provide information

for rework and repair of the UUT (e.g., which components are to be replaced). Also, detailed

failure data (i.e., which test procedure detected the failure, blocks 12 - 14) is not typically entered.

Furthermore, even if it were entered, that test procedure may consist of hundreds of individual

tests, and the tester may not have access to or knowledge of the actual test performing the diagnos-

tics. Once detected, the fault is then isolated to an ambiguity group, which typically contains many

components, and the entire ambiguity group is replaced. Consequently many good parts may be

rep!aced. The end result is that the UUT Test Result database contains failure data that represents

both failed and unfailed components, with at best high-level information about the failure mode.

Because of its position as the depot for STE/ICE and STE/CE-R, GE-ASD receives the highest

quality maintenance information available for those systems. Therefore, we may infer that the type

of information available to GE-ASD and revi wed here is representative of the most detailed

maii:,.nance information available in general on fielded military electronic equipment.

Table 4-2 shows maintenance data for the top ten STE/ICE and STE/ICE-R component

failures for 1989; Table 4-3 shows identical information for the first two months of 1990.

(Note: these tables do not include data for components that were screened for workmanship errors;

a large number of one type of 8K x 8 EE PROM fit into that category, failure mode unknown.) In

Tables 4-2 the predicted failure numbers were obtained using the MIL-HDBK-217E parts-count

4-10

UUT TEST RESULT No.

UNIT IDENTIFICATION
WORK

XACT SHOP ORDER PART NUMBER LOT ASSY. JOB SYSTEM CTR.

[I1 1I 1I1
FOR UNITS TESTED

DATE SERIAL NUMBER RESULTS - CIRCLE ONE

AC WK OS TP EL TE PL RE UN

DETAILED DATA

ASSOCIATED NO, PARA. NO. STEP NO. READING/DISCREPANCY

TESTERREF. DES., PART NO. S!N. OR LOT CODE CLQ(K NO.,I I

COPY I

Figure 4-1. Blank UUT Test Result Form (courtesy GE-ASD)

UUT TEST RESULT No.

UNIT IDENTIFICATION
WORK

XACT SHOP ORDER PART NUMBER LOT ASSY. JOB SYSTEM CTR.
17I

FOR UNITS TESTED

DATE SERIAL NUMBER RESULTS - CIRCLE ONE

17/_)-/0 1 Z3AC () OS TP EL TE PL RE UIN

DETAILED DATA

ASSOCIATED NO PARA. NO. STEP NO, READING/DISCREPANCY

3 / , 72/ X7 9
TESTER

' 0REF DES .'-J"J' PART NO. S/N OR LT CODE CLOC NQ..

/(90 / -o -0/o //S/2

COPY 2

Figure 4-2. Example of Filled-In Form (courtesy GE-ASD)

4-11

method. The ten failure mode values in Table 4-2 represent the granularity of maintenance faiure-

mode data available at the depot. The part numbers shown in the table have been assigned by the

Army for the STE/ICE and STE/ICE-R programs. The type of technology employed (771, bipolar

or CMOS) is indicated for the IC components. The assessment that an actual failure rate was

significantly higher than predicted was made by GE-ASD.

TABLE 4-2. TOP TEN COMPONENT FAILURES FOR 1989 AND 1990 (2 MOS.)

FAILURE MODE

COMPONENT PART # TECHNOLOGY ACTUAL PREDICTED 0 1 2 3 4 5 6 7 8 9
FAILURES FAILURES

1989

ANALOG MUX 12303710 CMtOS 193 209 25 121 43 4
DIFF4 C IANNEL 12258802 CMOS *98 1 81 17
RESISTOR NETWORK 12303724 - 96 50 4 43 1 48
RESISTOR RCR07GI64JR *75 0 1 74
QUAD OPAMP 12322423 711 *52 12 15 33 4
HEX D FLIP-FLOP 12258836 CMOs *49 13 49
12 BIT A/D CONVERTER 12258843 TIL *46 10 4 7 35
UV ERASABLE PROM 12310061 TIL 40 415 1 1 38
ATTEINUATOR I IYBRID 12258862 - *39 1 26 10 .3
ATENUATOR NETWORK 12303728 - 39 16 15 19

1990 (2 Mos.)

SWITCH-DIP M53504/01-027 TIL '*77 1 1 9 65 2
ANALOG MUX 12303710 CMOS 50 35 16 31 3

KEYBOARD4x5.MATRIX 12315257 - 39 33 1 4 33 1
DIODE JANIN963B - *31 1 27 4
OCTALLATCII/DRIVER 12315213 TIL *23 4 1 3 19
LNSTRUM A.IMP 12258842 TIL 22 14 8 11 3
ATrENUATOR NETWORK 12303728 - 21 187 5 15
CAPACITOR M83421/01-1117M - *21 0 19 2
INSTRUM AMP 12303715 TIL 18 29 10 7
CAPACITOR M39014/01-1299 - *17 7 15 2

FAILURE MODE LEGEND significantly more filures thin prudicted
0 Low VlueorLowGain
I Iligh Valu or Iligh Gan
2 Wrong Part. Missing Part
3 Irstlled Wrong or Labced Wrong
4 Shorted

6 Won't Switch. Stuck Iligh ot Low
7 Ovcrsmsd. Crcked, Broken, Bcn:
8 Intouitten

9 , O sche Nokv. Spikes

Examination of Table 4-2 indicates that no single component had significantly higher than

predicted failures in both time periods, and that eleven components had significantly higher than

predicted failures over the two time periods. Six integrated circuits were in this category, as were a

resistor, an attenuator h) brid (resistor network), two capacitors, and a diode. The vast majority of

the IC failure modes fall into categories 0, 1, 6, which are high/low value or gain and stuck

high/low. These data suggest that stuck-at fault models represent a significant number of fielded

faults, but that high and low gain faults are other important modes. In addition, intem-ettet faults

4-12

(category 8) appear to be the dominant failure mode for switches. The distribution of actual failure

modes, such as shown in Table 4-2, can aid engineering judgement in determining failure mode

rates from device failure rates calculated using MIL-HDBK-217 or a similar source.

4.4 SUMMARY: IMPORTANT FAILURE EFFECTS TO CONSIDER IN MODERN

ELECTRONIC EQUIPMENT

In summary, it appears from the literature that a small number of failure mechanisms and

generic effects should be considered when designing, analyzing, or verifying a diagnostic

capability.

At the physical fault-mechanism level, it appears that corrosion, electromigration, electrical

overstress, and electrostatic discharge are the dominant mechanisms that cause fielded electronic

equipment to fail. Also important for MOS technology are time-dependent dielectric breakdown

and hot electron degradation. The effects of these mechanisms on the behavior of the transistors,

connectors, and interconnects that make up a device are primarily shorts and opens on transistor

connections, shorts between metal lines, open metal lines, and changes to transistor threshold

levels.

At the gate level, these mechanisms translate into stuck-at lines, changes in gate function

(not representable by stuck-at faults), changes in circuit state dimension (e.g., a combinational

circuit can become sequential), and increased rise and fall times (delays).

At the chip level, these failures result in some type of incorrect output for some subset of

inputs and response delays. The incorrect output type of fault may be dependent on the sequence

of inputs and includes stuck-at and stuck-open behavior of a device's output as well as other type

of incorrect outputs.

When a device has a regular structure, more can be said about the effects of physical fault

mechanisms at the device boundary. Memories exhibit several specific faulty behaviors (Agrawal,

1988) though there is evidence (Stockman and Rash, 1985) that data loss is the primary field-

experienced failure. PLAs also exhibit special types of functional failures as discussed in Chang

and Abraham (1987). In addition, grouping faults according to the device functions that are

4-13

affected can be useful for test design and qualitative coverage assessment (does a test detect a

particular function failure?), but is useless for quantitative coverage analysis (what percentage of

actual fault mechanisms are detected by the test method?).

Finally, the information gleaned from our examination of STE/ICE and STEICE-R data,

which we feel is representative of the most detailed maintenance information available in general on

fielded military electronic equipment, is the following:

• a larger than expected number of 8K x 8 EE PROMs failed, with the cause traced to
bad workmanship, fault mode unknown,

• the vast majority of IC failure modes are high/low value or gain or stuck high/low, and

* intermittent faults appear to be the dominant failure mode for switches.

As discussed in subsection A.3, we have utilized the above information in our selection of

faults to be inserted and emulated in the demonstration by emphasizing stuck-at faults, shorts, and

opens, and a significant number of faults on the EEPROMs. We also note that intermittent faults

on any device type will continue to be a challenge to diagnostics designers and verifiers alike.

4-14

SECTION 5

THE ROLE OF FAULT SIMULATION

One of the main goals of this effort was to determine the roles of fault simulation and fault

insertion in the verification of diagnostic capability. In Section 3, we argued that validation of

diagnostic performance measures through factory fault insertion alone was not possible, and

consequently proposed two separate procedures: 1) diagnostic design verification-to demonstrate

that a diagnostic capability can detect the faults it is supposed to detect through factory fault

insertion, and 2) test-effectiveness analysis-for approximate validation (or really prediction) of

diagnostic performance measures.

As a result of this separation, the roles of fault insertion and fault simulation become very

clear. Fault insertion is used as part of the demonstration procedure. It is used solely to demon-

strate that the diagnostic capability has been implemented in accordance with its design require-

ments. For example, if in the design of the diagnostic capability it is determined that a particular

type of fault in a particular component should be detected, then this fault should be inserted during

the demonstration (or emulated if fault insertion is not possible, see Section 6). Fault insertions

can't be used to predict diagnostic measures like FFD and FFI because failure rates and failure

modes are uncertain at this stage in the development process and because random selection of real

faults for insertion or emulation is not generally feasible (e.g., due to accessibility limitations and

damage concerns).

Simulations potentially provide more visibility into the fault detection and isolation

performance of a diagnostic capability because more faults can be feasibly considered. However,

simulation techniques vary widely in terms of their utility for testability verification, and the

existence of a suitable simulation for any given device, including requisite failure modes and

diagnostics, is usually problematic. In addition, the problem of accurate prediction of failure rates

5-1

makes any simulation-based prediction of FFD or FFI oaly approximate. Finally, the costs and

complexities associated with developing and verifying a simulation may be too high to be of

practical value considering the potential inaccuracies of their results. Thus, we have concluded that

simulations can not be relied upon for testability verification. If available, their role is to support

the test-effectiveness analysis task by providing approximate values for the coverage of different

board fault modes by different test-elements within the diagnostic capability.

In the remainder of this section, we provide an overview of simulation techniques and

briefly discuss their role in support of the test-effectiveness analysis task. In addition to

simulation-based fault coverage methods, we also discuss some methods based on statistical

design analyses (e.g., STAFAN (Jain and Agrawal, 1988)). Methods for organizing and

performing the test-effectiveness analysis task are discussed in detail in Section 8.

5.1 FAULT SIMULATION TECHNIQUES

In general there are two ways fault coverage of a diagnostic capability can be determined;

Simulation and Design-Analysis. Simulation refers to software that replicates circuit behavior (at

some level) in both faulty and nonfaulty modes of operation. The results of simulations are used to

"grade" diagnostic systems by comparing faulty and nonfaulty simulation results (for FFD-type

analysis) and by comparing faulty simulation results (for FFI-type analysis). Design-Analysis

refers to direct prediction of diagnostic capabilities without explicit replication of circuit behavior in

faulty and nonfaulty modes. Design-Analysis uses a description of the circuit (as does simulation)

to determine if faults are inherently detectable or isolable. Descriptions for design-analysis may be

the same as for simulation (as in fault-grading methods such as in Agrawal (1988)), or drastically

simplified descriptions of the diagnostic capability itself (such as the fault accountability tables

employed in Section 8 of this report). This section discusses simulation techniques. Subsection

5.2 provides an overview of design analysis techniques that utilize logical models of the circuit

under consideration. Section 8 considers design methods that utilize higher-level descriptions of

the diagnostic capability.

5-2

Simulation techniques can be characterized by three features: 1) modeling technique, 2)

sampling technique, and 3) extent of simulation. To be useful, the simulation "engine" should be

independently verified (e.g., using a commercial simulator usually guarantees that the simulation

engine performs correctly, while the validity of customized simulation programs are more difficult

to establish).

The modeling technique determines what type of simulation engine is employed. There are

three generally accepted modeling techniques:

" Device models. Modeling of all lumped elements such as transistors, resistors, etc. is
accomplished through equations describing each device's V-I characteristics. Voltage
and current responses are then determined by the circuit network's topology, e.g.,
SPICE (Nagel, 1981),

" Switch models (applies to digital circuits only). Each transistor is modeled as a switch
that is either on or off or in transition. The latter allows timing information to be
derived. Logic levels vs. time are determined by the state of each switch and the circuit
topology),

" Logical models. Only the logical relationship between gate, cell, or chip inputs and
outputs are represented. When logical models are used to represent groups of gates
(cells) or an entire chip it is referred to as a register-transfer or functional level model.
Logic levels at each clock cycle are determined by the interconnection of logical models,
e.g., LASAR (Thomas, 1971).

In each of these methods, fault simulation is accomplished in a different way. With device

models, new voltage-current characteristics for faulty devices must be defined (e.g., see Weiss et

al. (1989)). For switch models, stuck-at logic levels and delay-type faults are simulated by

modification of gate outputs. For logical models, only stuck-at faults at the interfaces between cell

models are usually simulated by modifying cell-output logic levels. Note that when a cell consists

of many gates, this type of fault simulation omits many possible fault modes (see Section 4).

5.1.1 Gate-Level Logical Models

The most common simulations in use for digital circuits use logical gate models. In gate-

level logical modeling, the state (0,1) of every node in the gate-1-vei Lircuit network is determined

for both nonfaulty and single s/a fault modes under a set of test patterns. If there is a difference at

the output between nonfaulty and a single faulty simulation for any test pattern, the fault is said to

5-3

be detected. Highly efficient ways of simulating faults at the gate level have been developed.

Today, the use of concurrent, table-driven fault simulation techniques and the use of hardware

accelerators are most common and very effective (e.g., see Agrawal and Seth (1988)).

Even though efficient gate-level simulations exist, exhaustive fault simulation (i.e., all

faults are inserted and all test vectors are simulated for each fault) for large circuits is often not

possible (note that if all test vectors are applied, all faults of interest are guaranteed to effect the

device output for at least one vector. If no output data compression is used in the test technique,

then this implies 100 percent coverage and simulation is not necessary). This is true despite

techniques such as fault dropping (when you are determining FFD, you needn't simulate any fault

that has already been determined to be detectable). Because exhaustive fault simulation is often not

possible, sampling techniques are used. The most common methods use standard sampling

equations (for both finite and infinite populations) to give confidence measures for FFD (e.g., see

Agrawal and Seth (1988) p. 241). Typically only one to two thousand faults need to be inserted to

get high confidence using these methods. However, one should note that the confidence intervals

depend strongly on the ability to select faults at random (and thereby generate independent

observations). If, for example, there are many missed failures that all lie in one region of the

circuit, then accurate confidence intervals will not be obtained by sampling in any systematic way

according to the layout. This suggests that, where possible, potentially hard to detect faults be

determined by other means, and then simulation used to determine coverage of these faults. While

most sampling methods only deal with sampling of faults (and applying all test vectors), one could

easily consider sampling the test vectors for simulation (e.g., simulating all faults and some

vectors, or just some of both) as well. Much has been written about the use of gate-level logical

models and fault simulation for determining coverage of testing schemes. The latest Air Force

policy can be found in Debaney (1989)

5-4

5.1.2 Register-Transfer-Level Logical Models

Commercially available simulation packages have focused primarily on the gate-level

logical model for use in finding test vectors for the detection of faults in VLSI chips at the chip

foundry. The use of these packages for designing board-test schemes has been limited in the past,

but is increasing. This has required simulation vendors to develop register-level logical models for

commonly used digital cells. In most packages (e.g., LASAR) these models represent normal,

unfailed behavior only. Fault simulation is, therefore, limited to stuck-at fau'lts at the interfaces

between register-level models only. Furthermore, current register-level models are of limited use

in simulating the different modes of devices. While each mode of a devicc can be simulated in

many packages, the switching of modes in response to external stimuli is frequently not simulated.

Furthermore, register-level device libraries are, today, limited in scope and device vendors are not

always willing to provide such models for use in board test deve!opment.

Despite these limitations, tie concept of board simulation using register-level logical

models of devices is a useful one for design and evaluation of diagnostic capabilities. For

example, one suggestion involves using such simulations for evaluation of the diagnostic

performance measures with which this report is concerned (FFD and FFI). The idea here is to

simulate the operation of a board during operation of the diagnostic capability. If diagnostic

circuitry is located on the board, this would be modeled and simulated as Awell. Similarly, if the

diagnostic capability includes a self test program that is run by an on-board microprocessor,

simulation of the execution of that program would be done. Stuck-at faults on lines connecting

register-transfer-level models would then be inserted into the simulation to determine if the

diagnostic capability does in fact detect the fault as it operates. Essentially, this idea amounts to

simulation of the operation of the diagnostic capability in addition to simulation of the hardware

responses of the unit under test. Of course, such an approach would not be capable of evaluating

detection or isolation accuracy for all failure modes since many failures can't be represented by the

fault simulation method discussed above (see Section 4). However, since the faults that are

5.5

simulated in the above manner are a subset of all faults, this approach would give upper bounds to

FFD and FFI.

5.2 DESIGN-ANALYSIS TECHNIQUES

Most established/automated methods of design-analysis apply to gate-level logic models.

T'ney are largely based on probabilistic analysis in which it is assumed that test vectors are chosen

at random. This could be the case, for example, if test vectors are generated automatically using a

linear feedback shift register (on-line or off-line). The methods then try to determine the probabil-

ity that a s/a fault on a particular line will be detected by a given number of test vectors. These

probabilities are then added across all failure modes to give an estimate of test coverage. There are

usually several approximations that must be employed to make the calculations feasible, and as a

result, less accurate. For example, many methods compute two figures called controllability (the

probability that a line can be set to 0 or 1) and observability (the probability that a path to the output

is sensitized to a line set at 0 or 1) (Agrawal and Seth, 1988). Assuming independence, detectabil-

ity is the product of these two numbers. Unfortunately, independence is not valid in many cases

because the same underlying circuitry can detennine both controllability and observability. Meth-

ods for determining controllability also sometimes use the assumption that input lines to a gate are

independent. This is violated whenever there is reconvergent fanout. Research in this field is cur-

rently active. Most new methods try to provide more accurate results at the expense of somewhat

more computation. All analysis methods are much faster than fault simulation, however. Exam-

ples of commercial versions include STAFAN (Jain and Agrawal, 1988), PREDICT (Seth et al.,

1988), and COP (Brglez, 1988). Other ad-hoc methods for determining lower bounds on test

coverage include the toggle test in which one simulates the nonfaulty circuit and determines which

lines are never toggled to both 0 and 1. Stuck-at 0 and stuck-at 1 can not both be detected on such

lines. This provides an upper limit to test coverage for a set of test vectors.

5-6

SECTION 6

GUIDELINES FOR PERFORMING FAULT INSERTIONS

6.1 INTRODUCTION

This section provides gu'delines for demonstrating the fault detection and fault isolation

ability of the diagnostic capability of the unit under test (UUT) via physical and software fault

insertions (subsections 6.2 and 6.3, respectively).

The term fault refers to the condition when one or more functions of the UUT fails to meet

its performance specification. A diagnostic error is defined as the condition %N hen the diagnostic

system fails to detect (or isolate, if required) and report a fault, or when it produces a filse alarm

(e.g., an error message is generated during a no-fault condition). If the UUT is part of a larger

system, there must be clear, unambiguous definitions/partitions of the diagnostic responsibility of

the UUT. This is necessary for the determination of diagnostic errors.

Each fault inserted via the techniques in subsections 6.2 and 6.3 has the following

attributes when it is applied to a particular UUT:

1. Ease of Insertion and Ease of Removal

2. Risk of Permanent Damage (to the affected component and its neighboring
components)

3. Cost (e.g., for special equipment)
a. to insert
b. to remove
c. to replace, if damaged
d. to monitor (for verification of the fault insertion and its subsequent removal)

4. Significance-is the fault representative of an actual/real fault with significant
probability of occurring? (For example, a resistor has two fault modes, but typically
whenever it experiences a short, it quickly heats up and becomes an open)

5. Uniqueness-is the fault well-defined and isolated, or does it permeate into other parts
of the circuit, as with bus faults?

6-1

Each of these factors must be considered and weighed for each candidate fault insertion when

designing the demonstration to meet the objecti,,es stated in the Demonstration Plan (see

Section 7).

Of course, a primary concern is to avoid damaging the UUT during the fault insertion

demonstration. Physical damage avoidance is important not only because the UUT may be expen-

sive or of limited number, but also from the point of view of the validity of the demonstration-one

cannot guarantee that the diagnostic system is responding to the inserted fault versus the faults

induced by the physical damage. In general, components can be damaged if they are subjected to

excessive temperature, current, or voltage, with high temperature being the primary cause of inte-

grated circuit (IC) failure. These temperature-related failures can be related to combinations of

excessive current through, and the resistive properties of, the semiconductor junctions and wire-

bonds of the IC. Extreme currents can also weaken the metalization layer of the IC, and excess

voltage can cause problems in the silicon-silicon dioxide interface. For CMOS devices, voltage

overshoots can cause latch-up and catastrophic device failure. Also note that printed circuit

boards and integrated circuits may be sensitive to electrostatic discharge (ESD). These components

shall be clearly marked and handled in accordance with their ESD prevention procedures (see

MIL-STD- 1686 and DoD-HDBK-263 for details).

In order to provide context for the fault insertion techniques given in the following two

subsections, we give here a brief overview of the demonstration procedure (see Section 7):

1. Prior to the demonstration, the UUT should undergo board test to verify that it is fully
operational and does not contain any manufacturir.g defects that would obscure any
results of the demonstration. This board test will be an in-circuit test of the UUT's
hardware and a comprehensive functional test, typically via a board-test connector.

2. With the UUT fully operational, the correct operation of the diagnostics should first be
demonstra:ed. This procedure will execute all of the diagnostics and verify that the tests
performed by this software do not detect any errors (w%,hich would be classified as false
alarms).

3. The fault insertion demonstration will be performed on a fully operational UUT with
known faults inserted one at a time. Faults will be inserted using both hardware and
software methods. Typically each fault class (as listed in the Test-Effectiveness
Analysis (see Section 9)) will have at least one fault inserted.

6-2

6.2 PHYSICAL FAULT INSERTION TECHNIQUES

This subsection defines techniques in general terms for inserting faults into the UUT. To

generate a non-t-iN ial, non-destructive demonstration, an engineering protot. pe with socketed

components is typically required. This is because production units may be conformally coated nr

constructed in a manner (e.g., surface-mounted components) resulting in the lack of accessibility

and/or limited fault insertion capability. Note that if an engineering prototype is used, then the

contractor must certify that the prototype is a complete and faithful represer:ation of the functional

capabilities of the production unit.

Power must be turned off to the UT before any fault can be inserted (although shorting

pins together may be performed after initialization, if it can be safely performed and is more

convenient). To insert a fault, first determine on which board of the ULT the given fault is to be

inserted, and carefully remove this board from the CUT. Once the board is out, the fault may be

inserted using one of the techniques listed below. Next, the board is placed back into the UUT.

At this point the LUT can safely be turned on and the system initialized. Faalts to be inserted into

the UUT generally fall into ten categories, and the steps for inserting each are describe below.

1. Shorting a Pin to Supply or Ground

This fault consists of using a shorting probe lead to connect a given component's pin to

either ground or supply. Connect one end of the probe to ground or supply, and connect or hold

in place the other end to the proper component/pin. If it is more con%,enient and can be accom-

plished without damaging the desice, these voltages can be taken from th power supply inputs to

the given component. When manually holding or connecting the probe, be sure that the probe is

not touching any pins other that the gi,,en pin, because inadvertently shorting some pins to ground

or supply can damage the affected components. As a precaution, the shorting voltage should not

be applied to the component until the component/board is properly powered. Typically, this fault

is applied to isolated input pins, or the driver of that pin can be disabled. If the pin cannot be iso-

lated, it may be necessary to place a resistie load in the shorting prube to buffer the connection.

6-3

2. Removing a Pin and Shorting It to Ground or Supply

This fault consists of removing a specific pin of a socketed component. To insert this

fault pry the component out of its socket and carefully bend the appropriate pin upwards about

90 degrees. Care must be taken to prevent breaking the delicate pins. Carefully replace the

component with the bent pin out of the socket. It may be necessary to insulate the exposed pin

(e.g., with a small pic. of paper or non-conductive tape) to ensure that it makes no electrical

contact with its socket or any other pin. Next, use a shorting probe to connect this pin to either

ground or supply. As a precaution, the applied voltage should not be applied until the component/

board is properly powered.

This technique is similar to technique 1, but it can only be selected for those components

that are socketed. Thus, no unsoldering of components is necessary, as this process could either

damage the component(s) or the board on which it is mounted. This technique is suitable for

inserting an isolated fault on input pins.

3. Removing a Pin of a Socketed De, ice and Applying either Ground or Supply to the Vacant

Socket.

This fault consists of removing a specific pin of a socketed component from the circuit and

inserting an external voltage in its place. To insert this fault pry the component out of its socket

and carefully bend the appropriate pin upwards about 90 degrees. Care must be taken to prevent

breaking the delicate pins. Insert one end of a wire into the proper socket location that is being

vacateA. Carefully replace the component with the 1ent pin out of the socket. It may be necessary

to u-e an insulator (small piece of paper) to ensure that the bent pin .,iakes no electrical contact with

its socke-t, the shorting ,vire, or any other pin. Next, connect the shorting wire to either ground or

supply. The voltage should net be applied until the cGnponcnt/board is properly powered. This

technique is suitable for insertin6 an isolated fault on a device's output connection while elimi-

nating the possibility of damaging th, internal output bignal drivers of the component.

6-4

4. Removing a Pin of a Socketed Device and Leaving it Unconnected to its Associated Circuitry.

This fault consists of removing a specific pin of a socketed component. To insert this fault

pry the component out of its socket and ca.efully bend the appropriate pin upwards about 90

degrees. Care must be taken to prevent breaking the delicate pins. Carefully replace the compo-

nent with the bent pin out of the socket. it may be necessary to use an insulator (small piece of

paper) to ensure that the bent pin makes no electrical contact with its socket or any other pin. This

removed pin is not connected to either ground or supply.

5. Removing a Socketed Component from the Circuit Board.

This is self-explanatory. The component must be removed before power is applied to the

board. To minimize any damage associated with the process of unsoldering components, only

socketed components should be selected for this fault.

This type of fault represents a totally dead component whose input and output leads are

completely open.

6. Shorting Two Pins of a Device Together.

Connect two pins of a device together using a wire jumper. Be careful not to touch the

wire jumper to any other pin, creating unintentional, additional faults.

Faults of this type typically occurs to adjacent pins of a device or connector.

7. Inserting Faults on the Connector or Backplane.

To insert faults on a connector, an extension board may be use to facilitate the fault

insertion and its removal. The extension card may have switches that provide the necessary open

or short of any signal that is fed through it.

8. Disconnecting a Board from the Backplane.

This is self explanatory. This fault simulates an improperly seated circuit board.

6-5

9. Inserting Delays

Capacitors or long pieces of wire may be added between a removed pin and its vacant

socket to introduce delays in the circuitry. A detailed circuit analysis is required to ensure that the

proper amount of delay is being supplied to the affected pin.

10. Break-Out Boxes

Break-out boxes are normally used for board fault emulation. The fault injector of Hummel

(1988) ;- essentially a break-out box concept for socketed componenLs. it uses relays to create

shorts and opens and can drive output to arbitrary logic levels to simulate incorrect device outputs.

To be truly effective, some form of communication between the fault injector and the diagnostic

software is needed so that a faulty output for a single pattern in a sequence of patterns can be

injected, instead of fixing the output during the application of the whole test pattern.

11. Backdriving

Backdriving is a particularly useful technique for overdriving the output of components to

control the inputs to the device-under-test as if there were no surrounding circuitry connected to the

device. This technique is commonly used for in-circuit testing of boards during their production.

To prevent damage to the output drivers being backdriven, the in-circuit tester provides the neces-

sary backdrive current in pulses of approximately 10 to 100 microseconds. As a result of the pre-

cise timing requirements, in-circuit test is primarily performed using an expensive bed-of-nails

tester with the printed circuit board removed for the UUT. Also, it is the tester that controls the

function of the board and it is the tester's diagnostics that detects a fault.

This technique is not recommended for the fault insertion demonstration for the following

reasons:

1. the board with the injected fault is removed and isolated from the UUT,

2. the UUT is not "live" (i.e., operating with system software), and

3. the in-circuit tester has control of the system, and it is the tester's diagnostics that
detects the fault, thereby defeating the purpose of the demonstration of the UUT's
diagnostics.

6-6

6.3 FAULT EMULATION

Fault emulation is defined as a fault that is inserted via software. Once inserted, the fault

manifests the physical behavior of an actual fault. In fault emulation, the subject device is removed

from its board and the emulator probe is placed in the vacant socket. It is via this probe that the

emulator can control system operation and software execution and can directly read addressable

memory or register contents.

1. Microprocessor Emulation

This technique is familiar to many as the method used by microprocessor development

systems to aid in the hardware design and software development of microprocessor-based boards.

It is simple to adapt this technique to functional board test. One replaces the microprocessor on the

board-under-test with another microprocessor of the same type but which is under control of the

tester (e.g., the in-circuit emulator, or ICE). The emulation microprocessor then executes a test

program from an emulation memory, which may be the same as the memory on the board under

test. Ideally, the emulation microprocessor that executes this test program will be written to apply

patterns to the various devices located around the board, typically focusing on bus peripherals

(addressable components) and memory.

This technique is most effective when dealing with devices that are located directly on the

bus, since it is through the bus that all contact with the board is made. Microprocessor emulators

are equipped with only limited ability to drive and detect digital states at random points on the

board. Limitations exist as to the number of such points available, their protection against board

faults, ability to overdrive the board, timing control, and the means to program them in a flexible

fashion. For these reasons, test thoroughness and diagnostic precision decreases rapidly when one

moves farther from the bus. For example control signals are typically generated or decoded

separately from the bus affecting the tester's ability to control certain states.

The fault emulations employed by the Der. ration Plan in subsection A.3 are of this type

and are as follows:

6-7

1. Modify the expected value of the test. This can be done either before the test is exe-
cuted, or any time until the expected value is compared to the test result. When the test
is executed under fully operational conditions, an "error" will result.

2. At pre-determined breakpoints, halt test execution, insert erroneous data and resume the
test. This erroneous data can be entered either manually by the operator or via applica-
tion software.

3. Misdirect test execution by either skipping the execution of blocks of code or change
addresses so that the test is misdirected (in terms of data or other addresses).

2. Memory Emulation

In memory emulation, the tester substitutes its memory for the memory on the board being

tested. The board's microprocessor then executes a test program that has been loaded into this

memory. In addition to the advantages of the microprocessor emulation listed above, this tech-

nique has the additional advantage that it will exercise the microprocessor on the board under test,

instead of requiring its removal. As with microprocessor emulation, it does its job best when

dealing with the bus directly and is weak when it comes to supplying or testing non-bus digital

events or creating a particular environment for test.

Assuming that the test is executed out of emulation memory that is known to be good, and

that enough diagnostic logic is put into the test program, the test can be quite thorough. For exam-

ple, the test programmer should write a diagnostic routine that looks at the pattern of memory failures

and determine if they are caused by a decoder problem, a bit problem, or a memory chip problem.

3. Bus Cycle Emulation

This technique involves making the tester hardware mimic the activity of the micropro-

cessor's bus interface. The microprocessor can be viewed as having an arithmetic engine and a

bus interface that connects that engine to the outside world. In normal operation the bus interface,

under control of the execution engine, performs the specification book waveforms, which transfer

data to and from memory or I/O space. The bus cycle emulation does the same thing by executing

memory read and write cycles, but under control of the test programmer instead of the micropro-

cessor. Such cycles can be used, for example, to send commands to a serial port or retrieve data

from a floppy disk controller.

6-8

In order to perform a bus cycle emulation, the microprocessor on the board being tested

must be made to give up its bus interface to the tester. The most straightforward way to do this is

by applying a 'bus request' to the microprocessor and waiting for it to acknowledge that it has

tri-stated its bus interface. The bus is then in the control of the tester, and bus cycle emulation can

be performed.

6-9

SECTION 7

GUIDELINES FOR PREPARATION OF A DEMONSTRATION PLAN

The document outlined in this section supports the demonstration effort. It describes

how the demonstration will take place and records the results of the demonstration. The

demonstration should take place only after the diagnostic performance analysis report has been

reviewed and changes to the diagnostic capability are made if necessary. The purpose of the

demonstration is to show the Government that the diagnostic capability has been constructed in

accordance with the design and requirements specifications (including the diagnostic performance

analysis results) and that all functions are correctly operating. The demonstration may be treated

as an acceptance test, and numerical acceptance criteria can be defined. The demonstration plan

described below follows the total quality management (TQM) principle of constant improvement

(USDoD, 1988). Instead of numerical acceptance criteria, the demonstration requires that a plan

for correcting all problems found during the demonstration be established and agreed to by the

contractor and the Government. All numerical criteria are based on engineering judgement.

An example Demonstration Plan for a piece of modem military electronic equipment is

given in subsection A.3.

OUTLINE OF A DEMONSTRATION PLAN AND REPORT

1.0 INTRODUCTION

1.1 Purpose

State the purpose of this document (to describe the demonstratin test procedures for the
identified diagnostic capability and the results of the application of those procedures).
Refer to the documents that describe the diagnostic capability and the primary equipment
under test.

1.2 Scope and Acceptance Criteria

Describe the diagnostic capabilities that are to be demonstrated. Define the means of
detection and, if necessary, the means of isolation. Define the criteria to be used for

7-1

acceptance of the identified diagnostic capability. Use of statistical success criteria (e.g., m
out of n successful demonstrations) is not recommended because of the inability to select
faults randomly in modern complex equipment and the inaccuracy of failure rate prediction
methods. It is better to state how many errors (zero is recommended) will be acceptable
(errors are only acceptable when accompanied by a corresponding task resolve the
problem-see step B in 1.3 below) and how many reworks will be allowed under the
current contractual situation.

1.3 Overview of the Demonstration Procedure

Describe the sequence of events to take place during the demonstration and identify any
decision points within this sequence. The following is a reasonable example:

Step A) Demonstrate correct operation of the diagnostic capability when the system is
operational (go-chain demonstration).

Refer to Section 3 of this plan. Provide an overview of how the demonstration will take
place (e.g., for a TPS, run the go chain; for a power-up test, turn the power on; for initi-
ated BIT, initiate BIT sequence; for monitoring BIT, operate the system in all of its modes
of operation and possibly provide stressful inputs and/or environmental conditions). State
that if any fault is declared for an operational system, the contractor will determine the
cause of the error, correct the problem, and redemonstrate operation of the diagnostic
capability.

Step B) Demonstrate correct operation of the diagnostic capability under various fault
conditions.

Refer to Section 4 of this plan. Either state that all fault types are demonstrated or list the
fault types that can not be demonstrated and explain why (Section 2, paragraph 1, of this
plan). Step A should be redone between each fault demonstration (after the fault has been
removed) to ensure that no permanent fault other than the one being demonstrated is
present. Either state that all possible diagnostic outcomes resulting from faulty system
operation will be demonstrated or describe those that can't be demonstrated and explain
why (refer to Section 2, paragraph 2, of this plan). State that for every incorrect
demonstration result, the contractor will, if possible, correct the error, and later
demonstrate that this particular error was corrected. State that in order to demonstrate the
correction of each error, the specific fault that caused the error will be inserted or emulated
and the Government, at its option, will select faults from the alternate list that are related to
the error and these will also be demonstrated. State that if the error can not be corrected,
the contractor shall analyze the impact on overall system performance (refer to diagnostic
performance analysis report). Also state that if the Government, after reviewing the
analysis, determines that a significant impact is anticipated, the contractor shall prepare a
plan to mitigate the error. Assuming that the Government accepts the resulting mitigation
plan, a subsequent demonstration shall be held, at which the known error will be counted
against the system in determining the required number of faults to be successfully
inserted/emulated by the contractor (see 2.1 below).

Step C) State that the Government, at its option, will select arbitrary faults from the
alternate fault list. A predetermined number shall be selected, plus a number that shall be a
functior of the number of errors encountered in step B. For example, If x of the
demonstration results in Step B were incorrect, select x more from the alternate list. State
that any errors that occur in this step will be treated as in B.and that any errors in the
repeating of step B will be treated as in Step C. State the number of times the iterative
process will go on before the demonstration is terminated.

7-2

Step D) Finally, state that the government will accept the identified diagnostic capability
when all errors uncovered during the demonstration have either been corrected or a plan for
analyzing performance and correcting errors if needed, is provided. State that the plan for
correcting errors will include a schedule that is mutually agreed to by both parties. State
that the plan may include repetition of parts of this demonstration.

1.4 Responsibilities

Detail the responsibilities of Government and contractor for:

a) Providing facilities and equipment,

b) Witnessing of the test,

c) Formal acceptance,

d) Rework, if necessary.

1.5 Support Requirements

State what facilities, equipment, and personnel are needed for the demonstration to take
place.

1.6 Applicable Documents

Refer to the design documents that contain detailed descriptions of the identified diagnostic
capability (e.g., performance and design specifications for software, the diagnostic
performance analysis report, appropriate hardware specifications, etc.).

2.0 COMPLIANCE DATA

State the comprehensiveness of the demonstration plan with respect to the following
requirements.

2.1 Number of Faults

The number of faults to be demonstrated in Section 4 of this plan will be determined
in accordance with the MATE guidelines for TPS verification, vhich specify (in tables) the
necessary number of successful insertions, with an allowable number of errors, to reach a
desired level of confidence in a desired level of performance (USAF, 1985, Section 6).
State the MATE requirement for the number of demonstrations and the number of
demonstrations (not including those that may be selected by the Government) to be
performed in this plan.

2.2 Distribution of Fault Classes

The design requirements of the diagnostic capability will list the fault classes that
the diagnostic capability is designed to handle (detect or isolate). These fault classes may
be defined as components, component groups, functions of components, individual cells
within components, or component failure modes. It is recommended that the percentage of
these classes that are demonstrated in this plan should be at least 80 percent. State this
requirement and the percentage actually achieved in this plan. If the plan does not meet the
requirement, the reason for noncompliance must be justified and agreed to between the
contractor and the Government. (NOTE: when repetitive circuitry exists, the fault classes
defined for this circuitry should be merged to avoid multiple counting).

7-3

2.3 Distribution of Failure Rate

Each fault class to which the diagnostic capability was designed should be assigned
a failure rate (in accordance with the test effectiveness analysis, if it was produced).
Failure rate information for components within classes should be obtained using MIL-
HDBK-217 or a similar source. Rates for particular failure modes for a component must
be obtained using engineering judgement. If an FMEA was performed, splitting the
component failure rate equally among the modes is a reasonable first-order approach. It is
recommended that the sum of the failure rates for those fault classes that are demonstrated
in this plan should equal or exceed 90 percent of the total failure rate defined by the design
fault classes. It is further recommended that the sum of the failure rates for the fault types
of which each individual demonstrated fault (and its diagnosis mechanism) is representative
equal or exceed 30 percent of the total failure rate defined by the design fault classes. State
these requirements and the percentage actually achieved in this plan. If the plan does not
meet the requirements, the reason for noncompliance must be justified and agreed to
between the contractor and the Government.

2.4 Comprehensiveness of Software Test

If the diagnostic capability contains any software element, all paths through this
software should be executed in this plan. That is, all lines of code will be executed
somewhere within this plan. State this requirement and the percentage of code lines
executed by the test plan. If the plan does not meet the required 100 percent, the reason
for noncompliance must be justified and agreed to between the contractor and the
Government.

2.5 Comprehensiveness of Hardware Test

If the diagnostic capability contains any pure hardware test element, at least 85
percent of those elements should be demonstrated in this pian. State this requirement and
the percentage of hardware elements demonstrated by the test plan. If the plan does not
meet the required percent, the reason for noncompliance must be justified and agreed to
between the contractor and the Government.

2.6 Comprehensiveness of Diagnostic Outcomes.

The diagnostic outcomes of interest are defined in subsection 1.2 of this plan. The
requirement is to demonstrate all possible distinct outcomes of interest. State this
requirement and the percentage of all distinct diagnostic outcomes that will be demonstrated
and justify and agree to any noncompliance. As an example, in a TPS, this requirement
states that all R/R call outs (fault isolation outcomes) must be demonstrated along with the
go-chain. For fault detection systems, only the Go-path (diagnostic outcome = "OK") and
any No-Go paths are required. Note, however, that in this case many repeats of the same
No-Go outcome may be required in order to conform with requirements 3 through 5 above.

NOTE: The set of diagnostic outcomes includes all of the different manifestations of the
specified means offault detection or fault isolation. For detection, usually there are onl)
two outcomes (e.g., passifail). Organize the outcomes so that the outcomes associated
with each means of detection or isolation are grouped together. For isolation, the set of
possible diagnostic conclusions is the set of outcomes. In describing the diagnostic
outcomes, a complete list is preferable if possible (e.g., all of the terminal nodes in a TPS
decision tree). If the diagnostic capability can produce arbitrary combinations of a variety
of basic outcomes, then only these basic outcomes should be listed. Htowever, in this case,

7.4

all multiple basic-outcome occurrences that are to be dtmonstrated should be identified

here.

3.0 DETAILED DEMONSTRATION PROCEDURE FOR OPERATIONAL SYSTEM

Describe the detailed procedures for demonstrating that the diagnostic capability responds
correctly when no failures are present. Describe what should be witnessed as the result of
this demonstration (i.e., expected results). For monitoring types of diagnostic capabilities,
the primary system should be exercised in all of its modes of operation and if possible,
stressful inputs and/or environmental conditions should be applied. In all cases, the full
operational status of the primary equipment should be independently established (e.g.,
through the use of board test) before the start of this step.

4.0 DETAILED DEMONSTRATION PROCEDURE FOR FAULTY SYSTEM STATES

Describe the insertion/emulation procedures for both primary and alternate demonstration
faults. The primary faults are the faults selected by the contractor for initial demonstration
and the alternate faults are those selected by the Government. For each fault, describe

a) the procedure for insertion or emulation,

b) how to tell if the correct outcome was produced,

c) a list of the diagnostic outcomes checked (cf. Section 2, paragraph 1, of this
plan),

d) the procedure for selecting, inserting, and emulating alternate faults.

If the potential exists for unanticipated faults to be introduced when performing a fault
insertion, then full operational status of the primary equipment should be established after
the fault is removed (e.g., by executiig the steps detailed in section 3.0 of this plan).

5.0 DEMONSTRATION RESULTS

This section is not provided for the initial submission of this document, which is for
approval of the demo plan. For the final post-demo submission include:

a) a log of all demo activities and results,

b) plans for correcting or mitigating all errors that could not be corrected during the
demo.

Collect statistics on the demonstration results including:

a) number of faults demonstrated,

b) number resulting in correct diagnostic outcomes,

c) breakdown of (b) by diagnostic outcome (if more than one),

d) percentage of fault classes demonstrated,

e) list 6f functional/operational modes demonstrated.

If it is determined that during the execution of any demonstration step, a real fault (other
than any being inserted) was present, the result will be listed as a separate fault-insertion
step and the result recorded as if the real fault was planned. For example, if the real fault is
detected and/or correctly isolated during Step A, this will be listed as a correct fault
insertion in Step B. On the other hand, if a real fault is present in addition to an inserted
fault in Step B and the result is non-detection or incorrect isolation (i.e., neither fault is

7-5

called out in the final ambiguity group), then this will be listed as an incorrect (multiple)
fault insertion for Step B.

7-6

SECTION 8

ANALYSIS METHODS

8.1 OVERVIEW

In this section we present two methods of quantifying FFD and FFI based on raw fault

accountability data. The first method is a probabilistic approach that assumes independence of fault

detection events across test elements. The second method has been developed to overcome the

unrealistic independence assumption. Instead, bounds on FFD and FFI are computed based on

minimal assumptions about unknown set intersections. Both methods require the following

information to be specified:

1. a list of tests and their possible outcomes,

2. a comprehensive list of fault classes (preferably disjoint) for the system under
consideration,

3. the fraction of faults in each class that can cause each test outc ,me (the raw fault
accountability data), and

4. the decision logic that relates the relevant diagnostic outcomes to the possible test
outcomes.

Figure 8-1 illustrates the information that is needed to perform either analysis. The fault

co% erage information is organized in a table ,ith fault-class identifiers used as labels for the ro%% s

and test-outcome identifiers used as labels for the colLmns. Fault classes may be defined as

components, component groups, functions of components, individual cells %% ithin components, or

component failure modes. Each cell in the table represents the fraction of faults in the class

identified by the row label that causes the test-outcome identified by the coluni label to occur. In

Fig. 8-1, the total probability that fault class FC1 is detected is the probability that test outcome

TO I or T02 or T03 occurs v, hen that fault is present. As will be noted, the greatest accuracy in

analysis occurs when the fault classes and test outcomes are all highly specific.

8-1

A more convenient, but less accurate, analysis may be performed by treating the test

outcomes and fault classes hierarchica'ly as shown in Fig. 8-2. In Fig. 8-2, a single cell in Fig. 8-

I is considered. The test outcome and/or the fault-class of a single cell in Fig. 8-1 are

Test

Fault utcme T01 T02 T03 FIur
Classes Rates

FC1

FC2

FC3

Figure 8-1. Information Needed to Perform Test-Effectiveness Analysis

Test I

Faul uconesI T01 T02 T03 Failure
ClassesRates

FCl
1TO3.1 T T03.2

CFC2.1

FC2

FC2.2
FC3 FC2.3

FC3
T03 = (r03.1) .OR. (T03.2)

Figure 8-2. Hierarchical Analysis

further decomposed and analyzed to determine the entry in Fig. 8-2. These results are then sum-

marized in the entry in Fig. 8-1, this summarization leads to inaccuracy, compared with performing

and reporting the anal sis at the lower level. Note that fault-class failure rates must be obtained

using MIL-IDBK 217 (or a similar source) and engineering judgement. (An alternative source for

component failure rate is the increasingly common manufacturer-varranted figure.) Similarly,

fault accountability data must be obtained through the use of an FMEA/FMECA and/or engineering

judgement.

8-2

F.orn this information, the computation of two perfonnance measures, FFD and FFI, are

of interest. In both methods presented in this appendix, the results are more precise Nher, the fault

class definitions are of minimal size. In me limit, where ah faults in each class either cause each

test outcome or do not cause it (i.e., the fractions in item 3. above are either 0 or 1), both methods

result in precise values for FFD and FFI (if not accurate oecause of approximations to failure

rates). Both methods are closely related to the problem of determining signal probabilities for use

in statistical fault grading of test patterns (Agrawal and Seth, 1988).

Subsection A.2 presents an appaication of the probabilistic approach to calculation of FFD

for a modem military electronic unit.

8.2 INTRODUCTION AND MOTIVATION

Quantification of diagnostic performance measures such s FFD and FFI from basic

information about a diagnostic capability's design characteristics has been, and continues to be, an

important step in the design and validation of diagnostic systems. Today, there are many so-called

"testability analysis" methods that can be used for this purpose (e.g., see Agrawal and Mercier

(1985), Binnendyk (1989), Binnendyk and Remeis (198)), Huisman (1988), and .impson et al.

(1986)). One way to distinguish between these methods is by the design properties that must be

specified in order for the analysis to be carried out.

For example, determination of FFD by s/a fault simulation requires a gate-level description

of the primary digital chcuit and a list of the test patterns that will be applied to the circuit.

Coverage is determined by either exhaustive fault simulation or by random sampling, when the

numbcr of faults is too large. For modern electronic equipment, this method is infeasible since

gate level descriptions of proprictary devices may be unavailable and since computation of board-

level performance measures would requzre that many high-density VLSI device models be captured

on a single CAD system.

In MIL-STD-2165, a system-level approach is taken. Computation of FFD requires a list

of failure rates for each device on a board (or board in a box, o, subsystem wit;,* a system) and a

8-3

specification of FFD for that device (or board or subsystem). The latter is determined by

decomposing the device (or board, etc.) into various fault classes, assigning failure rates to each

fault class and then adding up the failure rates for those fault classes that are detected by the

diagnostic capability. Computation of FFI (or "fault resolution" as it is called in MIL-STD-2165)

requires a fault dictionary, which amounts to a list of fault classes., their failure rates, and a fault

signature associated with each fault class. All faults with th- same signature are indistinguishable,

thereby allowing computation of FF.

There are several problems in applying this method to modem diagnostic capabilities. In

computing FFD, for example, we must be able to decompose a device into mutually exclusive fault

classes and specify which fault classes are detected and which are not detected. The first step in

this process is easy. Simply decompose the device (or board) into regions that are and are not

exercised by the diagnostic capability. However, we can not assume that all faults contained in

each region that is exercised will be detected (if we did, a highly optimistic estimate of FFD would

result). To determine what fraction of faults in each exercised region is detected requires a further

decomposition. For example, testing a multiplier unit within a CPU by multiplying several

numbers and checking the results is a common test technique. However, such an approach

trequently will not detect all multiplier faults. To determine how many single stuck-at faults are

detected and how many are undetected would require fault simulation, which in-turn requires at

least a gate-level model, which may or may not be available or practically constructed.

Furthermore, single stuck-at faults may only be a subset of the faults that may be of interest.

However, methods to determine coverage of other fault types (besides single stuck-at) are still in

the research stage.

Another problem is that modern diagnostic techniques make use of functional testing and

overlay strategies. In these strategies, we may have one test (or test sequence) that is specifically

designed to detect faults in a certain device (or region of a device or board). Other tests, designed

to detect other faults, however, may also exercise the first device as well. This admits the

possibility that more faults could be detected (ignoring these makes the FFD estimate inaccurate,

8-4

but pessimistic). As a result, the test-sequences that need to be evaluated include all tests that

exercise a particular device. Thus, even if a diagnostic capability uses an established procedure for

testing a device (and hence its fault coverage is known), all additional tests that merely exercise ti-

device should also be analyzed for fault coverage to produce accurate estimates of FFD.

In computing FFI, MIL-STD-2165 requires that "fault signatures" for each fault class be

established. In systems using functional testing and overlay strategies this is a difficult task. For

example, consider the multiplier test example above. Suppose in addition to this test sequence, N% e

also have a functional test sequence that exercises the multiplier, as well as other devices in the

system. Now, how can the fault signature for the multiplier be determined? With two test

sequences there are four possible signatures (both tests fail, one test fails, and both don't fail).

Since neither test sequence detects all multiplier faults (as discussed above), it is conceivable that all

of the four fault signatures could be produced when some multiplier fault occurs. Some faults in

the multiplier will be detected by both test sequences. Some may I-,-- detected by the hnitial multiplier
test and not by the functional test. Similarly, there may be some detected by the functional test, but

not by the initial multiplier test, and some that are not detected by either test. Thus we see that all

fault signatures are possible for faults that occur in the multiplier unit. To use the MIL-STD-2165

methodology, we must list the fraction of multiplier faults that cause each of the four possible fault

signatures to occur. How can this be done? The only alternative is to decompose the multiplier

further into fait classes that result in each signature. As with the fault detection problem, this can

only be done, in general, by fault simulation, which has all of the drawbacks cited above.

What the above discussion indicates is that application of the MIL-STD-2165 methodology

ultimately requires full fault simulation of the entire equipment under each test stimulus condition

provided by the diagnostic capability. With today's CAD technolojy and the increasing use of

proprietary designs, this is not practical in large systems containing many VLSI devices.

These problems have motivated consideration of an alternative analysis approach. In this

approach, we assume that the designer can specify or estimate the fraction of faults in each of

several mutually exclusive fault classes that would cause each test (or test-sequence) executed in

8-5

the diagnostic capability to fail (or in multi-outcome cases, that causes each test outcome to occur).

More precisely, suppose we subdivide the equipment under consideration into sets of mutually

exclusive fault classes, F. The diagnostic capability is subdivided into individual test or test

sequence outcomes, tj. Let T3 be the set of faults that cause outcome tj. The approaches

developed in this appendix require only that the fraction of F, faults that is also in Tj (called f1j) are

specified. The way in which the equipment and diagnostic capability are subdivided is left to the

analyst. Hlowever, it should be clear that the deeper one subdivides both equipment and diag-

nostics, the more precise the analysis can be. In fact in the limit, where the f~j are either 0 or 1, the

method reduces to the MIL-STD-2165 approach.

The advantage of this approach is that we avoid the extensive effort associated with correct

application of the MTL-STD-2165 approach without compromising accuracy. Below we introduce

the notation to be used in developing this new approach. Two techniques are then described. In

subsection 8.2 a probabilistic approach that relies on an assumption of test independence is

described. Since this assumption is often not valid, a new method that allows computation of

bounds on FFD and FFI is developed in subsection 8.3.

NOTATION

di: diagnostic outcome i, a booleaa variable with di = 1 implying that diagnostic
outcome i is "true" (i.e., it has or will be generated by the diagnostic
capability). Standard boolean operators will be used throughout: addition
to denote union or logical "or" and multiplication to denote intersection or
logical "and". d is also used without a subscript to represent the diagnostic
outcome when only one is being considered.

f1. an often-used variable denoting fraction of faults, defined wherever it is
used.

fij: the fraction of faults in Fi that causes tj = 1. The fij for all i and j are the
raw accountability data from which the analysis starts. Note that
f=j = S(TrFi) /.S(Fi) assuming that all physical faults in the two sets are
equally likely to occur. Also note that this must be calculated using an
FMEA and/or engineering judgement.

Fi: fault class i, which should be interpreted as a set of physical faults.
max: the maximization operator on a set-the result is the largest element in the

set.
min: the minimization operator on a set-the result is the smallest element in the

set.

8-6

S (x): the cardinality of (total number of elements in) the set x.

ti: refers to outcome of test i. We will consider ti to be a boolean variable (it
takes on values of zero or one; 1 =the outcome ti has or will be generated,
O=it won't). Note that for pass/fail tests, only one outcome need be
considered. In general, if there are n outcomes of a specific test, only n- I
need to be considered; and usually the outcome corresponding to the one
produced when no failure is present (e.g., pass) is the one not considered.

TI: the set of physical faults that can cause ti = 1 when they occur individually.

p(x): unconditional probability of the occurrence of event x.

p(xly): probability of event x given that event y has occurred (conditional
probability).

[xL,XHI: we will use the shorthand notation with square brackets, x=[xL,XH], to
denote that the scalar variable x is bounded from below by XL and from
abo{,e by XH, i.e., XL < x _ xi.

z: the complement of boolean variable or set z.

XI: failure rate associated with Fi. Note, this must be calculated using MIL-
HDBK-217 (or a similar source) and engineering judgement.

XT: total system failure rate (may be the sum of all q if all relevant fault classes
have been enumerated). Again, MIL-HDBK-217 and engineering
judgement must be applied.

8.3 A PROBABILISTIC METHODOLOGY

8.3.1 An Introductory Example

To introduce the concepts in this section, consider the following problem. Suppose we are

told that fault class F 1 is isolated whenever test- I fails, or whenever test-2 fails and test-3 passes.

Let the boolean variable "d" denote the single diagnostic outcome "F 1 is isolated." Let t, be the

boolean variable associated with test outcome "test-i fails." Then,

d = tI + t2 t3

Now, as part of an FFI calculation we might be interested in determining the fraction of F1 faults

that actually cause the diagnostic outcome (d=l) to occur (note we are not assuming as in

MIL-STD-2165 that the callout ofF 1 guarantees that only F1 faults (and no others) result in this

diagnostic outcome). The raw accountability data (the f1j) may be organized in a table as shown

below (Table 8-1). For example, we might have fil = 0.90, f12 = 0.80, and f13 = 0.05. Notice

that the sum of the fij over all j need not be equal to one.

8-7

TABLE 8-1. RAW FAULT ACCOUNTABILITY DATA
tI t 2 t3

In the probabilistic methodology, we treat all fractions as probabilities. That is, the fraction

of F 1 faults causing d = 1 is interpreted as the probability that d=1 given that a fault in F1 has

occurred, or formally p(d= 1 1 F1). The fj are interpreted as the probability that test outcome tj

occurs given a fault in F, has occurred, or p(tj = 1 I Fi). To compute p(d=l I F1) from the

p(t = 1 I F1) simply involves repcated application of standard probability axioms and theorems

(e.g., see Papoulis (1965)). For clarity, we repeat the important properties here. (Note that we

use the notation "a" and "b" to represent both events and the boolean indicator variable for those

exents; also the notation p(x) means p(x=1); this will be used in general in the remainder of this

section.)

Property 1: p(a) = 1 - p(a).

Property2: p(a -b)=p(a) + p(b) - p(ab).

Property 3: If events a and b are independent then p(ab) = p(a) x p(b).

Now, we can apply these axioms and properties to the problem of computing p(d I F1) from the

p(t1 I Fl) and the decision logic of Eq. 8-1. The following steps provide the desired result. (Note

that all probabilities are conditioned on F1 , so we drop the conditional notation for the time being.)

a) p(t3) =1-p(t3)

b) p(t2 t3) = p(t2) (1 - p(t3)) by assuming that t2 and t3 are independent

c) p(d) = p (t + t2 t3) = p(t1) + p(t02) - p()p(t2 t) assuming that tl is independent of
t2 and t3. Using the result of step (b) and switching back to fij notation, we have

p(d=i I Fl) = fl +f 12 (1 - f1 3)- fl f12(1 - f13)

8-8

For the numerical values f1 l = .90, f12 = .80 and f13 = .05 we have p(d = I I FI) =0.976 (.98 to

two significant figures).

8.3.2 A More Complex Example

Suppose now that we consider the problem of three tests and four fault classes, with

hypothetical fault accountability data (fj) as shown in Table 8-2. Suppose further that there are

four diagnostic outcomes of interest (one detection and three isolation) that are defined by:

do = fault detected,

dl = fault is in RU A (fault class 1, FI),

d2 = fault is in RU B (fault class 2, F2), and

d3 = fault is in RU C (fault class 3 or 4, F3 or F4).

The decision logic defining each of these outcomes is assumed to be:

do = tl + t2 + t3

dl = tl

d2 = t2ti

d3 = t3.

We now wish to compufe FFD and and FFI.

TABLE 8-2. HYPOTHETICAL FAULT ACCOUNTABILITY DATA
t1 t2 t 3

F1 0.95 0.25 0.00

F2 0.10 0.95 0.01

F3 0.00 0.10 0.95

F4 0.00 0.15 0.90

8-9

PROCEDURE FOR COMPUTING FFD

Step 1: Compute p(do=ll F1) = fl, the fraction of F 1 faults causing do = 1.

a) fI = 0.95, f12 = 0.25, f13 = 0.00

b) p(tl + t2IF 1) = 0.95 + 0.25 - (.95) (.25) = .9625

c) p ((tl + t2) + t31F 1): .9625 + 0 - (.9625) (0) = .9625 (.96 to two significant figures).

Step 2: Compute p(do=1 I F2) = f2 = .95545 (.96 to two significant figures).

Step 3: Compute f3 = .955 (.96 to two significant figures).

Step 4: Compute f4 = .915 (.92 to two significant figures).

Step 5: Assume that all fault classes are disjoint, then

4Ex i
i=l

FFD-
4

1=l

and numerically, FFD = 3.80/4 = .95 (since all failure rates are assumed to be equal). Notice that

this equation is the same as the MIL-STD-2165 equation for system level test effectiveness (para.

50.7.5, Appendix A). The difference here is that to get the f, we need first to analyze the raw fault

accountability data in tcrms of the defined decision logic. While this procedure therefore requires

more effort in general, it provides a firmer basis for determining the fi when test coverage overlap

exists. Notice that in the case where no test coverage overlap is present (e.g., fij = 0 for all i # j),

this method reduces to the MIL-STD-2165 procedure.

PROCEDURE FOR COMPUTING FFI

For FFI, assume that groups of size one are of interest. Since all diagnostic outcomes

result in single RU ambiguity groups all outcomes are considered here. (In general we would

not consider those outcomes resulting in RU ambiguity groups of size larger than one).

8-10

Case 1: Fraction of All Faults Isolated

Here we interpret FFI strictly as the fraction of all faults correctly isolated to groups of size

one. In Cast, 2 we treat the case where FFI refers to the fraction of detected faults correctly

isolated to groups of size one.

Step 1: Compute fl, the fraction of F1 faults that cause correct isolation to RU ambiguity groups
of size one. If an F 1 fault is present, then correct isolation implies d] = 1, which has a
single RU ambiguity group. Thus fl = p(dl = 1 1 F1). Since dl = t1, fl = 0.95 from
Table 8-2.

Step 2: Compute f2, the fraction of F2 faults that cause correct isolation to RU ambiguity groups
of size one. Since correct isolation for F2 faults is equivalent to d2 = 1, f2 = p(d2 1 F2).
Assuming that t2 and tl are independent and applying property 1, we get f2 = .95
(1 - .10) = .855 (.86 to two significant figures).

Step 3: f3
= p(d3 = 1 I F3) =0.95

Step 4: f4 = p(d3 = 11 F4) = 0.90

Step 5: Assuming disjoint fault classes and equal failure rates for each of the four classes, then
FFI = (.95 + .86 + .95 + .90) / 4 = .915 (0.92 to two significant figures).

Contrast this approach now with MIL-STD-2165 (para. 50.7.3.2, Appendix A). In that proce-

dure, it is assumed that a fault dictionary exists. In the notation used here, a fault dictionary

implies that the fj are either 0 or 1. As we have discussed, such accountability data can only be

achieved if the fault classes are small enough (e.g., individual physical faults). In modern equip-

ment, however, it is generally not possible to create such fault classes (e.g., every stuck-at fault in

a combinational logic circuit would have to be considered a separate fault class). When the fault

accountability table contains only 0 and 1 entries, the method discussed here reduces to the 2165

method. In such a case, no independence assumptions need to be made, and therefore the result is

more precise.

Since FFI = .92, then 8 percent of all faults are either cause an incorrect isolation outcome

or are not detected or both. A question naturally arises here: what is the percentage of all faults

that cause an incorrect isolation outcome?

8-11

PROCEDURE FOR COMPUTING FFIw

The procedure for computing the fraction of all faults that are incorrectly isolated, FFIw, is

similar to the procedure for FFI (all failure rates assumed equal). For our example:

Step 1: Compute fl, the fraction of F1 faults that can cause incorrect isolation. Since correct
isolation is dl = 1, incorrect isolation is defined by d2 + d3 = 1. Therefore
fl = p(d2 + d3 I F 1). Using the definitions of di and the assumption that the ti are
independent we have

fl = f13 + f2(1-fl 1) - f13f12(1-f1 1) = .0125 (0.01 to two significant figures)

Step 2: f2 = p(dl+ d3 I F2) = f21 + f23 - f21f23 = 0.109 (0.11 to two significant figures)

Step3: f3 =p(d 2 +dlIF 3)=p(tl+ tlt 2 1F3).

To evaluate this expression, we hae a slightly more complex problem. In the previous examples,

the assumptions of test independence allowed us to apply iteratively the properties of probability.

in this case, however, we are faced N%,ith computing a probability of the form p(a + b) where a and

b are not independent because both a and b depend on tj. In general, the calculation of

probabilities for arbitrary boolean expressions such as the one in Step 3 is a very difficult problem

when the expression is large (it is, in fact, NT-complete (Papadimitriou and Steiglitz, 1982)).

H1o% ever, for small expressions (this vAill be the case for many practical systems), the following

procedure can be used:

Substep 3.1: Construct the truth table for the relevant expression. In this case we have

tl t2 tl + ti t2

0 0 0

0' 1 1

1 0 1

1 1 1

Substep 3-2: For each case in which the desired expression is equal to one, compute the
fraction of relevant faults (in this case F3) that could cause the combination
of test outcomes represented by that row in the truth table. In this case,
assuming independence, we have

8-12

tI t2 Conditional Prob
--

0 1 (1.0- 0.0) (0.1) .1

1 0 (0.0) (1.0- 0.1)= 0.0

1 1 (0.0) (0.1) = 0.0

where for each row the third column is calculated as the product of the
probability (given that F3 is true) of the indicated value of ti (column one)
times the probability (given that F3 is true) of the indicated value of t2
(column two).

Substep 3.3: Since each row in the truth table is mutually exclusive with all other rows,
add up the results of substep 3.2. In this case we get f3 = 0.1.

Note that we could also have obtained this result by recognizing that the tl and t, t2 are mutually

exclusive so that f3 = 0.0 + (1.0 - 0.0) (0.1) = 0.1 by Property 2 with p(ab)=0. Since the boolean

expressions representing fault isolation decisions are usually short, either the procedure outlined in

Step 3 may be followed, or manual application of the properties of probability for the relevant

expression may be effective.

Step4: f4 =p(d2+dlIF4)=p(t+ tt 2 1F 4)

Following the steps outlined in Step 3, we have

f4
= (1.0 - 0.0) (0.15) + (0.0) (1.0- 0.15) + (0.0) (0.15) = 0.15.

Step 5: Assuming disjoint fault classes and equal failure rates as in the FFI calculation, we have

FFIw = (0.01 + 0.11 + 0.10 + 0.15) / 4 = 0.0925 (0.09 to two significant figures).

Notice now that FFI . FFIw > 1 in this example. This is a real effect (not due to rounding)

because the d, in this case are not mutually exclusive (i.e., dl and d3 can both be 1 at the same

time, as can d2 and d3). As a result, some fa -Its may cause both a. incorrect and a correct

isolation decision (e.g., an F2 fault can cause t1 = 0, t2 = 1, and t3 = 1, resulting in d2 and d3

equal to one; one correct isolation (d2) and one incorrect (d3)). In diagnostic systems that are

organized in a fault- isolation tree (e.g., a TPS), this will not happen because the isolation outcomes

are mutually exclusive.

8-13

As an aside, suppose we change the decision logic so that di = ti for i=l, 2, 3. Recalcu-

lating FFI and FFIw using the above procedures we get FFI = 0.94 and FFIw = 0.15. Notice that

while we achieved a 2 percent increase in FFI (from .92 to .94), FFIw increased by more than 60

percent (from 0.09 to 0.15). This shows the importance of looking at both FFI and FFIw in eval-

uating diagnostic performance (at least when isolation decision functions are not mutually exclu-

sive). In the example, it is worth noting that the major increase in FFIw came from incorrect

isolation of F 1 faults to d2 (as would be expected from Table 2). This kind of information can

provide guidance for improving the overall effectiveness of the diagnostic capability (e.g., as

measured by FFI/FFIw).

Case 2: Fraction of Detected Faults Isolated

In general, if a fault is isolated (e.g., di = 1) then we say it is detected. That is do = dl +

d2 + ... (This was not the case in our example, although it is easy to show for that example that

isolation implies detection there as well). Since this is generally true, we will not treat the case

where isolation does not imply detection (this case is treated in subsection 8.4, however).

When isolation implies detection, then we are guaranteed that FFI < FFD since the faults

that are correctly isolated are a subset of all the faults that are isolated (correctly or not), which are,

in turn) a subset of the faults that are detected (by assumption). As a result, the fraction of detected

faults that is correctly isolated, FFId, is just given by

FFId = FFI / FFD

For our numerical example, FFId = .97 (to two significant figures).

8.3.3 Summary

In this subsection, we demonstrated how the properties of probability could be used to

relate raw fault accouiL.Ability data to o,,erall diagnostic performance measures such as FFD and

FFI. The method assumed that tests are independent since specification of test overlap in addition

to the raw accountability data would be infeasible. Unfortunately, test independence is frequently a

8-14

poor assumption since faults are not assigned to test groups, Ti, at random. In the next

subsection, we develop a new approach that provides upper and lower bounds on FFD and FFI by

assuming minimal and maximal values for the size of the overlapping coverage sets.

8.4 A SET-THEORETIC MTHIODOLOGY

In this subsection we present a new method of computing the desired diagnostic perfor-

mance measures from fault accountability data. The approach is an alternative to making the inde-

pendence assumption, which can not be justified in many of the situations to which it is applied.

In this subsection the theoretical results that are needed to solve the problems of deter-

mining overall performance measures from raw fault accountability data are presented by example.

A summary of the results is given at the end, along with a prescription for applying the results in

aeicrmining FFD and FFI.

8.4.1 FFD for Dedicated Test

The trivial case assumes that there is a one-to-one mapping between ti and Fi, that ti = 1

only if a fault in F, is present (i.e., only dedicated test functions), that FF, is empty unless i=j

(i.e., all fault classes are disjoint), and that detection occurs if at least one ti = 1.

A fault accountability table for a three-fault class and three- test diagnostic capability is

shown in Table 8-3. The diagnostic outcome for fault detection, d, is given by the boolean

TABLE 8-3. DEDICATED TEST SITUATION
T1I T2 T 3

Fo o
1 11

F f
2 22

F3 0 0 f 33

8-15

expression d = t1 + t2 + t3, and FFD (for N fault classes) is computed by

N

I=1
FFD=

XT

Note that we need not know the actual sizes of any Fi or Ti to compute FFD.

8.4.2 FFD with Overlapping Coverage.

Unfortunately, in most modem diagnostic capabilities the assumption that all test resources

are dedicated test funLtions is likely to be invalid. This is because of the prevalent and effective ue

of functional testing and overlay BIT techniques and because of interactions betveen subs stems

,hen they are electrically connected (as cpposed to operating in isolation). (Even dedicated BIT

may detect faults in modules other thai those to v. hich it is dedicated, (e.g., the power supply and

loading faults).

Suppose we have two tests outcomes, tl and t2, and a singlefault class, Fl. We now

show that the problem of determining FFD is not trivial when only fj is given and that the result

depends strongly -n the decision logic used to combine ti and t2 to make an oxerall fault detect

decision.

CASE 1: LOGICAL UNION

Assume that d = ti + t2. By definition, FFD is precisely defined (since there is only one

fault class) by

FFD = S(T + T2)
S(F 1)

Of course, neither the numerator nor the denominator of this expression t.an be direcly determined.

If we are given fl1 and f12 , then by definition S(TI)/S(F) = fi 1 and S(T-)/S(FI) = f12. From this

we can write FFD = f1l + '12 - S(TjT 2)IS(FI). Unfortunately, FFD still can't be computed exactly

because there is no specification of the size of T1T2 . The problem is sho%,.n in Fig. 8-3. Since it is
~8-I5

usually impractical to specify the size of the overlap between T1 and T 2 , Nke would like to be able

to at least compute bounds on FFD that consider all possible overlap conditions. The following

theorem gives optimal bounds for FFD in this case. Note that there is no failure-rate term since

there is only one fault class.

Theorem 1: Assume that we have a single fault class F1 . Let d = t1 + t2 and the fraction of faults

that make d=1 be called FFD. Then

FFD = [max (fl1 , fl2 },min 1, flI + fl 2 }]

with these bounds being optimal (the upper bound is the least upper boand and the loNN er bound is

the greatest lower bound).

T IT2v1 V2

F
1

Figure 8-3. Overlapping Test Coverage

Proof: The least upper bound corresponds to the largest union of T1 and T2. The largest union

corresponds to the smallest intersection, which is zero if S(T 1) + S(T2) - S(F1), and in this case

FFD = flI + f12. If S(T1) + S(T2) -> S(F1), then the smallest intersection is the one that makes

S(T1) + S(T2) =S(FI) and thus FFD = 1.

The greatest lower bound corresponds to the smallest union or largest intersection. If

S(Tl) - S(T2) then the largest intersection is when T1 is a subset of T2 and FFD = f12. If

S(T1) >- S(T2) then the largest intersection is when T2 is a subset of T1 and FFD - fll. QED

8-17

CASE 2: LOGICAL INTERSECTION

Again, assume a single fault class and two test outcomes, with a decision logic defined by

d = t1t2. This case might represent part of an overlay strategy designed to reduce false alarms. In

this case FFD can be precisely computed from

FFD - S(TIT 2)

S(F)

As in Case 1 this formula is not useable when only fl 1 and f12 are known since the size of the

intersection is unknown. Through arguments similar to that above, we can derive optimal bounds

on FFD in this case.

Theorem 2: Given a single fault class F 1 and decision logic d = tlt2. The fraction of faults that

make d=1, FFD, obeys

FFD =[max { O,fll+f 12 -1 },min { f1 1,fl2)

with these bounds being optimal (the upper bound is the least upper bound and the lower bound is

the greatest lower bound).

Proof: The least upper bound on FFD corresponds to the largest intersection of T1 and T2. The

largest intersection occurs if either T1 is a subset of T2 or T2 is a subset of T1. If T1 is a subset of

T2, then the size of the intersection is S(T1) and FFD is equal to fl1. If T2 is a subset of T1, then

the size of the intersection is S(T2) and FFD is equal to f12. The least upper bound is therefore the

largest of fl 1 z. - f12.

The greatest lower bound corresponds to the smallest intersection of T1 and T2. If

f12 + fl 1 < 1, then the smallest intersection is when T1 and T2 are disjoint and the size of the

intersection is therefore equal to 0. Iffl1 + f12 > 1, then the smallest intersection is bigger than

zero. The smallest intersection is the one that makes the size of T1 +T2 equal to 1, which is clearly

equal to flI + f 12 - 1 (since the S(TI+T 2) = flI + f 12 - S(T1T2)). QED

8-18

CASE 3: DECISION LOGIC HAVING COMPLEMENTS OF TEST OUTCOME VARIABLES

Theorem 3: Given one class of faults F1 and the test outcome tj with fault set T 1. If the fraction of

faults that make t1 = 1 is fl1 , then the fraction of faults that make tj = 1 is 1 - fl 1.

Proof: By definition fll = S(T 1) / S(F1). The faults that make tj =1 make tl = 0, and are those

faults in T1 F1. The size of this set, S(T1 F1), is clearly S(F1) - S(T1). The theorem is proved by

dividing S(F1) - S(T 1) by S(FI). QED

For example, consider d = ti + t2 . Applying Theorems 1 and 3, we have

FFD= [max (f 11 , 1-f 12 ,) min 1,f11 +1 -f 12)]

In general, if tj appears in the decision logic, then Theorems 1 and 2 apply with 1 - fj used

everywhere in place of of fij.

CASE 4: GENERAL DECISION LOGIC

In principle the decision logic that relates a diagnostic outcome to a set of test outcomes

may consist of an arbitrary boolean expression. To determine correctly the optimal bounds on the

fraction of faults that cause the specified diagnostic outcome from the known coverages of the

individual tests is a very difficult problem in general (as stated in subsection 8.3, this problem is

NP-complete).

Consider a decision logic expression of the form

d=t1 t2 + t2

The truth table for d is shown in Table 8-4. The fraction of faults in the single fault class F1 that

cause d=1 will be called FFD. As in subsection 8.3.2, an algorithmic method can be employed to

compute FFD based on the truth table. However in this case, where independence is not assumed,

the algorithm is considerably more involved and is therefore omitted here. Suboptimal bounds,

however, can be obtained by sequentially applying Theorems I through 3 to portions of the

arbitrary decision logic expression.

8-19

TABLE 8-4. TRUTH TABLE FOR CASE 4
t t d

1 2 d

0 0 1

0 1 0

1 0 1

1 1 1

For example, bounds on FFD for the above decision logic expression would be computed

by first computing bounds for the expressions tlt2 and t2 separately. Then bounds on d are

computed using Theorem 1 to combine these t" o bounds. Let the fraction of faults causing

tlt2 = 1 be called r. From Theorem 2,

r= [max (0, fI1+f12-1}, min fII, f12}].

Similarly, the fraction of faults causing t2 = 1 will be called s. From Theorem 3, s 1-f12, or

using similar notation as for r,

s= [- f 12, 1 - f 12]

To get FFD, we now apply Theorem 1 recognizing that the decision logic is of the form d = a + b,

with the coverage of the boolean variable 'a' given by 'r and coverage of the boolean 'b' given by

's'. Thus, formally we have

FFD =[max (r, s) , min [1, r+s)]

Now, r and s are not known precisely so v~e must combine their ranges in some way. This is done

using the follwing theorem, which is stated without proof.

8-20

Theorem 4: Given two numbers r and s that are imprecisely known but bounded such that

r = [rL, rH] and s = [SL, SH]:

a) max{r,s}=[max{rL,SL},max(rH,SH)]

b) min fr,s)= [min{rL,SL),min {rH,SH}

c) (r + s) = [rL+ SL, rH+ SH]

d) (r-s) =[rL-sH,rR-sL]

e) (r/s) =[rLJSH,minrH/SL, 1)]

Thus, for this example, we have

FFD=Imax { rL,SL) ,min { rH+SH, 1)]

with

r =max 0 , fl1 +f12-1),
rH =rnin flf 12), and

SL =SH = 1- f12-

With the values f 1I = 0.90 and f12 = 0.60, then FFD = [0.5, 1].

It must be mentioned again that when bounds for the fraction of faults that cause d = 1 are

computed by iterative use of Theorems 1 through 4, as was done above, there is no guarantee that

the bounds are optimal. This is because Theorems 1 and 2 assume that no knowledge of the

overlap between the coverage of the two component decision logic portions is available. This is

true when the two decision logic portions are individual test outcomes. However, % hen the two

decision logic portions are boolean functions of the same test outcomes, then some knowledge of

overlap may exist.

For example, in the above calculations we applied Theorem 1 for d = a + b. Now,

Theorem I assumes that S(ab) is unknown. But since a = tlt2 and b = t2, we know that

S(ab) = 0. Thus, bounds in this case may actually x.; determined by FFD = r+s. Using Theorem

4c and the bounds on r and s given above,

8-21

FFD=[1 -f 12 + max{0, fll+fl2-1) I - f12 + min{f1 l, f12)]

In the numerical example with f 1I = 0.90 and f12 = 0.60, the bounds are FFD = [0.90, 1.0].

These happen to be the optimal bounds for this case. The following theorem applies to unions of

mutually-exclusive decision logic portions, and in general will give tighter bounds than the iterative

application of Theorems 1 through 4 (although they are not necessarily optimal either).

Theorem 5: Given a single fault class F 1 and a logical decision function, d, in the form

d=cl+c 2 +...I+CN

Ci =].r' Sj

with sj = either tk or tk and cicj = 0 for all i j (i.e., the decision logic portions cl are mutually

exclusive). Let ri = the fraction of F 1 faults causing cl = 1. Then the fraction of F1 faults causing

d=l, FFD, is

FFD = ri 0

or when the ri are imprecisely known but are bounded (i.e., ri = [, Hi]), then

FFD =[Li, Hi 0
i i

Note here that these bounds may not be optimal either since in general, the individual decision logic

portions ci may be functions of the same test outcomes. As a result, a non-obvious coup!ing of the

bounds on each decision logic portion may occur.

While the bounds computed through iterati-ve application of Theorems 1 through 4 may be

loose in general, we note here that the decision logic of interest in many applications takes a form

in which tighter bounds can usually be obtained. For example, a common decision function for

detection of faults is the union of a set of tests (e.g., the go-chain of a TPS). Theorem 1 is readily

extended to provide optimal bounds for the union of more than two test outcomes:

8-22

Theorem la: Assume that we have a single fault class F 1. Let d = ti + t2 + t3 + ... tN and the

fraction of faults that make d=1 be called FFD. Then

FFD = [max (fI, f12, f13 ... , fiN }, mi { 1, fl11 +f 1 2 + f13 + ... + fn)]

with these bounds being optimal. 0

Similarly, for decision logic that is structured in a decision tree (e.g., a TPS), each branch

of the tree represents a multiple intersection decision logic. In computing FFI, we will want to find

all branches that result in removals/replacements of specific size and determine what fraction of

faults contained in the correct fault classes result in each diagnostic outcome (each branch). In this

case Theorem 2 is readily extended:

Theorem 2a: Assume that we have a single fault class F1. Let d = tlt2t3 ... tN, and the fraction of

faults that make d=1 be called FFD. Then

FFD=[max(0, flI+f12+f13+...+flN-(N-1) ,min (fl, f12, f13, ... ,fIN}]

with these bounds being optimal. 0

8.4.3 FFD with Disjoint and Nondisjoint Fault Classes of Overlapping Coverage

CASE 1: DISJOINT FAULT CLASSES WITH OVERLAPPING COVERAGE

In Example 2 we dealt with a single fault class. Disjoint fault classes with dedicated test

functions were discussed in Example 1. The case of disjoint fault classes with overlapping

coverage is easily handled by applying Theorem 4c to the formula given in Example 1. In

particular, suppose we are given the f,, and a specific decision logic and, using the examples

discussed above, we computefor each fault class tie fraction of faults in that class that causes the

diagnostic outcome. Call these fractions fl. In general, only bounds on each f, will be known,

i.e., fi = [Li, Hi]. If all fault classes are disjoint, then it is easy to show that

8-23

tLi Xi Hi X

FED = i=1 i=1

Disjoint fault classes can be ensured when performing a validation analysis by decom-

posing the system along ph) sical boundaries (note that this is also a good way of ensuring that

failure rates can be estimated using MIL-tIDBK-217 or a similar source). Sometimes, however, it

may be useful to decompose the faults of a spedfic device according to the functions the device

performs or the various specific modes of failure that are known. Now, fault classes formed in

this vay are seldom disjoint since the ph)sical mechanisms that cause faulty behavior may cause

faults in more than one class. For example, a bond-wire failure will affect all functions that require

usfe of the pin connected to the faulty wire. In general, nondisjoint fault classes are likely to arise

anytime a functional, rather than physical, decomposition of a UUT is performed.

CASE 2: NONDISJOINT FAULT CLASSES WITH OVERLAPPING COVERAGE

When nondisjoint fault classes are involved, the above equation for FFD does not hold,

and the following theorem must be used.

Theorem 6: Given two nondisjoint fault classes Fj and F2 with failure rates X-1 and X2 ,

respectively, and given fl and f2 , the fractions of faults in each class that cause the relevant

diagnostic outcome, d = 1, then the total fraction of faults that causes d = 1, FFD, is given by

FFD= Nmax ain X1 fl+ X2 f2

X1 + X2 - Nmin I Xmax

where

Nmax = max { -lfl, ?, 2f2 ,

Nmin = min { Xfl, X2f2 }, and

Xmax = max X Il, X2

8-24

Proof: If a given test, i, covers f, of the faults in F,, then it covers ?f, faults (per time unit), all in

Fl. Now consider two tests, I and 2, which cover fl faults in F1 and f2 faults in F2, respectively

(see Fig 8-4). The question is, given that F 1 and F2 are not disjoint, what are the largest and

smallest fractions of total faults that are covered by the two tests? This, of course, depends upon

the size of the intersection of F1 and F2 and how many faults in that intersection are covered by

both tests.

Maxinum Coverage. The maximum coverage is obtained when the intersetion between F 1 and F2

is maximum and there are no faults common to T1 and T2 (since this results in the smallest total set

size and the largest cover). The smallest total set of faults occurs when either F 1 is a subset of F2

or vice versa, depending upon which fault class is iarger. Therefore, the smallest total number of

faults is ma = max X)q, A2). The largest cover occurs when the intersection (or overlap)

2 f

Figure 8-4. Fault Coverage of Tests 1 and 2

bet%%,een T 1 and T2 is zero, in which case the total number of faults covered (per time unit) is .1 fl

+-?2 f- . Therefore, the maximum fraction of total faults covered is

)-lfl+ X2 f2

Xmax

which can be greater than oae (clearly this bound is not optimal).

8-25

Minimum Coverage. The minimum number of faults co, ered occurs v, hen either T1 is a subset of

T2 or vice versa, depending upon which set is larger. Since there are ?LXf1 faults (per time unit) in

T1, the minimum number of faults covered is Nmax = max [X.lfl, 7,2 f2). Now, in order for T1 to

be a subset of T2 (or vice versa) there must be overlap between F 1 and F2 as shown in Fig. 8-5.

The minimum coverage occurs when S(FI+F2) is maximum or S(F 1F2) is minimum. From the

figure it is clear that the minimum of S(F 1F2) when T1 is a subset of T2 is S(F1F2)=?L1f1 , and

when T2 is a subset of T1 it is S(F 1F2)=?.2f2. In general the minimum of S(FIF 2) is Nmin =

min [.LXfl, ?,2 f2). The resulting fault universe has size S(F 1F2)=Xl + X 2 - Nmin. Therefore,

the minimum fraction of total faults covered is

Nm~ax QED
A-1 + X 2 - Nmin

In computing o,,erall measures like FFD or FFI, Theorem 6 would be used after computing

the fractions c f each fault class that cause the relevant diagnostic outcome (i.e., after the fi are

F F2

Figure 8-5. Overlapping Test Coverage

determined). Theorem 6 would be applied separately to all groups of fault classes that may be

nondLjoint. These groups, along %% ith all other disjoint fault classes, would then be combined in

the disjoint fashion presented above.

8-26

8.4.4 FF1 Calculations

This subsection presents no new theory. It simply demonstrates how the above

calculations can be combined to estimate FFI.

First, recall that the definition of FFI is the fraction of lifetime faults that are correctly

isolated to RU groups of specified size. Thus, all faults that are incorrectly isolated and all faults

that result in RU ambiguity groups of larger than the specified size are not included in FFI. To

compute FFI, %%e need to specify all of the diagnostic outcomes that result in RU ambiguity groups

of the specified size. Then, for each of these outcomes, we need to define which fault classes are

the correct fault classes (i.e., fall vithin those RU ambiguity groups). Finally, using the theory

developed in the preceding examples, w-. e must compute the fraction of each correct fault class that

results in each diagnostic outcome, and then combine all correct fault classes of all outcomes.

CASE 1: FRACTION OF ALL FAULTS ISOLATED

Consider the fault coverage information given in Table 8-2 (see subsection 8.3.2).

Suppose that the fault classes are disjoint with cqual failure rates, and further suppose that the fault

isolation logic consists of hree separate outcomes:

dl = fault is in RU A (fault class I, FI),

d2 = fault is in RU B (fault class 2, F), and

d3 = fault is in RU C (fault class 3 or 4, F3 or F4)

The decision logic defining each of these outcomes is assumed to be

dl =t 1

d2 = t211

d3 = t3

8-27

In this example, we assume that FFI for RU groups of size one is of interest. Since all outcomes

result in single RU ambiguity groups, all outcomes are considered here. In general we would not

consider those outcomes resulting in RU ambiguity groups of size larger than one.

Step 1. Compute fl, the fraction ofF 1 faults that cause correct isolation to RU ambiguity groups
of size one. If an F 1 fault is present, then correct isolation implies dI =1, which has a
single RU ambiguity group. Since di = tl,

fl = 0.95.

Step 2: Compute f!, the fraction of F2 faults that cause correct isolation. For F) faults, correct
isolation is equivalent to d2 = 1. Since d2 = t2t1 , we use Theorems 2 and 3 to get

f2 = [0.85, 0.90].

Step 3: Compute f3. For F3, correct isolation is equivalent to d3= 1. Thus

f3 = 0.95.

Step 4: Compute f4. For F4 , correct isolation is d3= 1. Therefore

f4= 0.90.

Step 5. Applying the result of Example 3, Case 1 (we assumed disjoint fault classes) and
Theorem 4c,

FH = (.95 + [.85, .90] + .95 + .90)/4, or (to two significant figures)

FFI = [0.91, 0.93].

For comparison, recall that in subsection 8.3 for this same example but assuming independent

tests, we calculated FFI = 0.92, which lies %,ithin the FFI bounds just calculated.

Another measure of interest is the fraction of faults incorrectly isolated (whether the

decision logic results in RU ambiguity groups of specified size or not). To compute the fraction of

faults incorrectly isolated (FFI,), we follow similar steps.

Step i. Compte fl, the fraction of F1 faults that can cause incorreu-t isolation. Since di= I is
the correct outcome for F1 faults, d3 - d2 =I is incorrect. The fraction of F1 faults

8-28

that results in d3 + d2 = t3 + t2tI = 1 is computed using Theorems 1 through 4 as

fl = [0, 0.05]

Step 2: Compute f2, the fractioa of F2 faults that cause d + d3= t + t3 =. Using Theorem 1,
f2 = [.10, .11].

Step 3: f3 = the fraction of F3 faults that cause dl + d2 = ti + t2t1 = 1. Using Theorems 1
through 4 we have f3 = 0.10.

Step4: f4
= 0.15.

Step 5: Since we assumed disjoint fault classes, FFIw = ([0, .05] + [.10, .11] + 0.10 + 0.15)!
4 or

FFIw = [0.09, 0.10].

For comparison, recall that in subsection 8.3 for this same example but assuming independent

tests, we calculated FFIw = 0.09, which lies within the FFIw bounds just calculated.

Notice that FFI + FFIw may be greater than 1 according to this analysis. This is real (and

not due to rounding) because, for this decision logic, there are some faults that can cause both

correct and incorrect isolation (e.g., Table 8-2 admits the possibility of some F2 faults that cause

t1 = 0, t2=1, and t3=1 resulting in d2= 1 and d3= 1; one correct and one incorrect outcome). In

general, this type of result is possible whenever the decision logic for the various outcomes are not

mutually exclusive, as is the case here (dl and d3 can be true at the same time as can d2 and d3).

Finally, notice that if we change the decision logic to di = ti for i = 1, 2, 3 and recalculate

FFI and FFIW,, we get FFI = 0.94, and FFlw - [.09 .15]. Thus, with this different decision logic

we achieve a slightly higher FFI, but FF1w could be over 50 percent rarger. This shows the

importance of computing FFIw in addition to FFI for evaluation of diagnostic fault isolation

systems.

CASE 2: FRACTION OF DETECTED FAULTS ISOLATED

Above we computed the fraction of total faults correctly and incorrectly isolated to RU

ambiguity groups cf size one. To determine what percentage of the detected faults this corre-

sponds to, we first need to define the set of detected faults. Usually, this set is specified only in

8-29

terms of the decision logic used to check for faults (e.g., the go-chain). Suppose, for example,

that the go-chain fails (a fault is detected) if any t, fails. That is, the detection outcome, d, is

defined by

d = tl + t2 + t3.

For the coverage data of Table 8-2 (assuming disjoint fault classes and equal failure rates),

FFD = [.94, 1.0]. For comparison, recall that in subsection 8.3 for this same example but

assuming independent tests, we calculated FFD = 0.95, which lies within the FFD bounds just

calculated.

To get bounds on the fraction of detected faults that are correctly (or incorrectly) isolated to

RU ambiguity groups of the specified size, the following theorem may be applied.

Theorem 7: If the fraction of all faults that are correctly isolated is r and the fraction of all faults

that are detected is called s, then the fraction of detected faults that are correctly isolated, FFId, is

bounded by

FFId = [max{0, r+s-1 }, min{r, s}] / s

Proof: The numerator in Theorem 7 consists of bounds on the fraction of total faults that are both

detected and isolated and is obtained using Theorem 2. This is then divided by the fraction of

faults that are detected. QED

For example using the results for FFI in Case 1 of Example 4, r = [.91, .93] and from

above s = [.94, 1.0]. Theorems 4 and 7 can be used to get•

FFId = [0.85, 0.99].

(A general rule of thumb: when evaluating the lower (upper) bounds of expressions that are

functions of uncertain quantities, use the lower (upper) bound of the appropriate quantity). Notice

that even though both FFD and FFI are greater than 90 percent, Theorem 7 says that the fraction of

detected faults that are correctly isolated may be as low as 85 percent. Again for comparison, recall

8-30

that in subsection 8.3 for this same example but assuming independent tests, we calculated FFId =

0.97, which lies within the FFId bounds just calculated.

While Theorem 7 provides a mechanism for computing bounds on FFId, these bounds may

be far from optimal (they may be loose). This is because Theorem 7 assumes that the size of the

set of faults that causes both detection and isolation is unknown (and therefore must be bounded

using Theorem 2). However, this may in fact be untrue s*nce the detection and isolation decision

logic are frequently both functions of the same individual test outcomes. Therefore, a more

accurate bo-nd can be obtained if the decision logic for the intersection of detection and isolation

decision functions is simplified.

In the above numerical example we first notice that using the actual definitions of d and

di, i=i,2,3, all faults that cause an isolation outcome (correctly or not) are also detected. As a

result we have (to two significant places):

FFId = [0.91, 0.93] / [0.94, 1.0] = [0.91, 0.99] .

This example is important since for most diagnostic systems all faults that cause an isolation

outcome are also detected. In particular, it is true for any diagnostic logic that can be structured

into a dec'sion tree (e.g., a TPS) since all isolation outcomes "fall out of the go-chain" (i.e., are

detected). In general, however, this result may not hold.

8.4.5 Sumary

For reference, the primary results presented in this subsection on the set-theoretic

methodology are repeated here.

LOGICAL UNION

Theorem la: For a single fault class FI with decision logic d = tl + t2 + t3 + ... tN, the fraction of

faults that make d=l, FFD obeys

FFD= [max { fll, f12, f13, ... JfiN },min (1, fl +f 12 +f1 3 + ... +f IN }]

with these bounds being optimal.

8-31

LOGICAL INTERSECTION

Theorem 2a: For a single fault class F1 with decision logic d = t1t2t3 ... tN, the fraction of faults

that make d=l, FFD, obeys

FFD = [max {0, fllI + f 12 + f13 + ... +f]N - (N-) rin { fIl, f12, f13, ..., fn }]

with these bounds being optimal.

COMPLEMENTS

Theorem 3: Given one class of faults F 1 and the test outcome tl with fault set T1. If the fraction of

faults that make tl = 1 is fl1 , then the fraction of faults that make tl = 1 is 1 - fl 1.

Whe:. evaluating bounds for arbitrary boolean expressions involving the complement of a boolean

ariable or clause, a, use 1 - fa in the relevant formulas, where fa is the fraction of faults causing

a=1.

ALGEBRAIC COMBINATIONS OF UJNCERTAIN QUANTITIES

Theorem 4: Given two numbers r and s that are imprecisely known but bounded such that

r = [rL, rH] and s = [SL, SH]:

a) max{r,sI=[max{rL,sL),max{rH,SH)I

b) min(r,s}= [min{rL,SL),min{rH,sH}]

c) (r+s) -- [rL+SL,rH+SHI

d) (r-s) =[rL-sH,rH-SL]

e) (r/s) = [rL/sH, min (r1-/sL, 1)]

A good rule of thumb is that when an "internal" algebraic expression appears in evaluating the

lower (upper) bound of another expression, use the lower (upper) bound of the internal

expression.

GENERAL DECISION LOGIC

A useful procedure for evaluating the fraction of faults that might cause an arbitrary

expression to be true is to apply iteratively the previous results to portions of the overall decision

8-32

logic expression. For example, to compute the fraction of faults Lausing d = (a+b) c (e+f), one

could first compute the fraction of faults causing (a+b) and (e+f) separately using Theorem 1, and

then combine these results with the fraction of faults causing c using Theorem 2.

This method may or may not produce tight bounds. Tight bounds are not produced if any

two decision logic portions contain reference to the same test outcome. For this reason, a more

accurate bound is obtained when the decision logic is simplified. If the expression is simplified to

standard union form (i.e., the union of intersection terms with each term being a minterm, or

equivalently mutually exclusive with all other terms), then the total fraction of faults causing the

expression to be true is bounded by the sum of the fraction of faults causing each term. This is

summarized in the following theorem.

Theorem 5: Given a single fault class F1 and a decision function d in the form

d =cl+c + ... +CN

ci sj

with sj = either tk or tk and cicj = 0 for all i j (i.e., the decision logic portions cl are mutually

exclusive). Let r, = the fraction ofF 1 faults causing cl = 1. Then the fraction of F] faults causing

d=1, FFD, is

FFD = X. ri

or when the ri are imprecisely known but are bounded (i.e., ri = [, Hi]), then

FFD=[Li , X Hi

8-33

COMBINING RESULTS FOR MULTIPLE FAULT CLASSES

Disjoint Fault Classes

Let the fraction of each fault class that causes the relevant diagnostic outcome be defined as

fi. Given fi = [Li, Hi], then if all fault classes are disjoint

FFD = i=lI , i =I
F T XT .

Nondisjoint Fault Classes

Theorem 6: Given tv, o nondisjoint fault classes F 1 and F2 with failure rates X1 and X2, and given

fI and f2 , the fractions of faults in each class that cause the relevant diagnostic outcome, d = 1, then

the total fraction of faults that causes d = 1, FFD, is given by

FFD [Nmpx min Ifl + X2 f2 ,}]
X,1 + X-2 - Nmin ?,max

where
Nmax = max { Xlfl, ?,2 f2 },

Nmin = min { Xlfl, X2f2), and

Xmax = max {X1, X2).

GENERAL PROCEDURES FOR FED AND FFI CALCULATION

Definitions:

FFD: the fraction of lifetime faults that are detected by specified means.

FFI: the fraction of lifetime faults that are correctly isolated to RU ambiguity
groups of specified size by specified means.

FFIw: the fraction of lifetime faults that are incorrectly isolated to RU ambiguity
groups of any size by specified means.

FFId: the fraction of those lifetime faults that are detected by specified means that
are also correctly isolated to RU ambiguity groups of specified size by
specified means.

8-34

General Procedure:

Step 1: Develop the fault accountability data fj

Step 2:

Substep 2.1: For FFD, define the decision logic (go-chain).

Substep 2.2: For FFI,

a) define the decision logic for all diagnostic outcomes with RU ambiguity of the
specified size.

b) for each fault class, specify the correct diagnostic outcome.

Substep 2.3: For FFIw,

a) define the dec;sion logic for all diagnostic outcomes.

b) for each fault class, specify all incorrect diagnostic outcomes.

Substep 2.4: For FFId,

a) form the intersection of the decision logics for FFD and FFI.

b) simplify each expression where possit:'.- (for decision tree logic organization,
the intersection simplifies to the isolati(.n decision logic).

c) for each fault class specify the correct diagnostic outcome.

Step 3: For each fault class, compute bounds on the fraction of faults in that fault class that could
cause the relevant diagnostic outcome.

Step 4: Combine bounds for all fault classes into the o,. erall mcasure. Group fault classes into
disjoint groups if possible. Use Theorem 6 for groups of nondisjoint fault classes.

Substep 4.1: If substep 2.4 was done, then to get FFId use Theorem 4 to derive the
overall measure of fraction of faults that are both detected and correctly
isolated by FFD.

Substep 4.2: If substep 2.4 was not done and FrId is desired, apply Theorem 7.

Theorem 7: If the fraction of all faults that are correctly isolated is r and the fraction of all faults

that are detected is called s, then the fraction of detected faults that are correctly isolated, FFId, is

given by:

FFId= [max (0, r+s-1), min (r, s]/s

8-35

SECTION 9

GUIDELINES FOR PREPA, ,,7%N OF A DIAGNOSTIC
TEST-EFFECTIVENf- ", .LYSIS REPORT

This section provides a guideline for cre. D. .. Dlagnostic Test-Effectiveiess Analysis

Report tailored to the analysis methods described i Section 8. Other methods may require other

report formats.

The Government may also elect to prepare ., Performant.e Analysis Review report (either

by itself or through an independent contra:.. to provide feedback to the contractor on the analysis

repor. The analysis report and review should be conducted prior t, the demonstration (see

Section 7) to allow time for modificaions to the diagnc.ic capability to be made if necessary.

In the following, the general content of the performance analysis report is outlined.

Subsection A.2 contains an example Test-Effctiveness Analysis Rep-:t for a modern

military electronic unit.

OUTLINE FOR A DIAGNOSTIC TEST-EFFECTIVENESS ANALYSIS REPORT

1.0 INTRODUCTION

1.1 Purpose

State the purpose of this document (to analyze the piuformance of the identified diagnostic
capability).

1.2 Scope

Briefly describe the diagnostic capability. Define the means of detection and isolation
under consideration. State the measures that are to be estimated, if any, and their numerical
goals, if available. If the diagnostic capability has different modes of operation or several
distinct features, it may be mor- appropriate to compute measures for each feature or mode
instead of a single figure of merit. Briefly discuss the fault universe under consideration in
this report (e.g., are digital delay faults being considered or only stuck-a! faults, are internal
device faults being considered or only :aults at the interfaces between devices, etc.)

9-1

1.3 Overview of Analysis

Define the performance measures to be analyzed, if any. De.cribe the analysis procedure
used and justify its use. Describe assumptions and accuracy limitations of all quantitati,,e
methods. Describe the procedure by which the aralysis was conducted (e.g., how was
varous data gathered, what review cycles were made, were any changes to the diagnostic
design made as a result of the analysis process, etc.). State if a qu.. itative assessment.of
performance will also be made.

1.4 Applicable Documents

Refer to the design documtrnts that contain detailed descriptions of the diagnostic capability
(e.g. ,erformance and design specifications for software, the diagnostic performance
analysis report, appropriate har iware specifications, etc.).

2.0 DEFINITIONS FOR ANALYSIS

2.1 Fault-Class Decomposition

List the universe of fault-classes for which this analysis is to be done and assign failure
rates. To the maximum extent possible, fault classes should either be characterized by
disjoint physical circuitry or by failure modes of disjoint physical circuitry. The
decomposition should be uniformly given to the next level of hardware indenture (e.g., at
least specify each component as a fault class for board-level diagnostic capabilities).

If MIL-STD-217 was used to determine device or component failure rates, either refer to
existing documentation or include the failure rate analysis in an appendix to this document.
Engineering judgen'ent, together with the results of any previously performed FMEA, must
be relied upon to assign rates to failure modes of a device or component. State if it was
assumed that all failure modes .e equally likely. Include all devices, connectors, and
interconnects as physical elemer s. Include diagnostic hardware if appic-,riate (the correct
diagnostic outcome for diagnostic hardware faults should have been specified ..- part of the
performance specification for the diagnostic capability). For each physical eJement,
describe all of the failure-types to be considered and assign an identifier and a failure rate to
each resulting fault class.

If ..c measures of interest pertain only to critical failures, a failure mode effects and
cr.. Jlity analysis (FMECA) should be made. This analysis must define the fault universe
of ' .:crest for the test-effectiveness analysis as well as the fault probabilities. The fault
prob.bilities are the probabilities that a mission-critical failure will occur over the mission
time due to the fault; namely, p, = Prob(fault i causes a mission critical effect) x
[1 - e-(XiTmission)), which fcplacc)j/X-T in the analysis equations. The value of
Prob(fault i causes a mission critical effect) may be considered a criticality value that takes
on values between 0 and 1.

2.2 Detailed Description of the Diagnostic Capability

2.2.1 Overview

Provide an overview of the diagnostic cap.bility. For sequentially operating capabilities
such as initiated BIT or a TPS, this is best accomplished by describing the sequence of
ev.ents that take place. For monitor-type capabilities, a top-down hierarchical description
may be best. Clearly state the means of detection and isolation under consideration.

9-2

2.2.2 Definitions for Analysis

Define the basic diagnostic outcomes and assign identifiers. For all isolation outcomes,
define the RU ambiguity group size. Define the individual test outcomes and assign
identifiers to each. Define the logic that relates each diagnostic outcome to each test
outcome (this may include demonstration that faults of the diagnostic capability hardware
are not detected in some instances).

3.0 TEST APPLICABILITY ANALYSIS (OPTIONAL)

The analyses in this section assume :hat the diagnostic capability is correct. That is, if a
particular test outcome is supposed to occur under given fault conditions, it will always do
so. The results are therefore an upper bound to performance of the diagnostic capability.

For Fault Detection: List all of the failure modes that v ill result in the diagnostic capabilit,
failing to indicate that a fault is present (e.g., in TPSs, failure modes that result in all
Go-Chain tests passing). Compute their failure rates and compute FFD as one minus the
ratio of the sum of these failure rates to the sum of the failure rates of all failure modes of
the equipment under test.

For Fault Isolation: Assume ,hat all detected faults are correctly isolated (i.e., the
diagnostic outcomes are always correc," Compute the failure rate for each fault isolation
ambiguity group, Xm. Compute the ,.action of faults isolated to groups of the specified
size using standard methods (e.g. MIL-STD 2165, Appendix B).

4.0 DETAILED FAULT ACCOUNTABILITY ANALYSIS

This section may be organized in one of two ways: a) by test or b) by fault. In a "by-test"
organization, each test is considered in a separate p2 -jgraph as described below. In a
"by-fault" organization, each paragraph corresponds to a particular fault-class as listed in
Section 2 above. In this method the primary test that covers this fault mode is listed and the
percentage of faults in the class under consideration that are covered by each relevant test is
determined.

Organization by Test:

For each test outcome described in 2.2.2;

a) State the purpose of the test.

b) Provide a qualitative coverage assessment.

For example, list the fault classes defined in 2.1 that will cause the test outcome. Also, list
any fault mechanisms (considered in 2.2.1 or not) that should, ideally, cause the test
outcome (according to the purpose of the test), but in fact do not. For example, the
purpose of a checkerboard memory test is to determine that data can be stored and
retrieved. It will detect static data losses, but it may not pick up row/column coupling
errors.

c) Quantitative Coverage Estimate

9-3

Estimate the fraction of faults in each fault class that could cause the test outcome. State
how each number was arrived at (e.g., previously verified diagnostic capability,
exhaustive fault simulation, sampled fault simulation, statistical fault grading technique,
engineering analyses, etc.).

NOTE: 100 percent coverage of faults in a given class (e.g., in a given component) is
guaranteed when a test applies an exhaustive set of inputs (e.g., all test patterns) to the
fault-class and performs no output data compression. Otherwise, 100 percent fault
coverage can not be guaranteed. For example, a test that exercises all functions of a device
is not guaranteed to cover 100 percent of the faults even though it "covers" 100 percent of
the functions. Similarly, if a test exercises X percent of the functions, then, if the faults
that cause the various fiinctions to fail are disjoint (no single fault causes multiple function
failures) and there are an equal number offaults that can cause each function to fail, then
the fault coverage is no greater than X percent (if there are common fault modes, then fault
coverage can be greater or less than X percent). The same is true if the number offaults is
different and coverage is determined by gate-count for each function.

When using fault simulations to determine the percent coverage of a test-group with respect
to any fault class, the guidelines given in Debaney (1989) should be adhered to.

Summarize the quantitative coverage analysis in tabular form for easy reference in Section 5
below.

5.0 PREDICTION OF DIAGNOSTIC FIGURES OF MERIT

Outline the procedure(s) to be used and describe the organization of this section. Document
both intermediate and final results. A separate subsection for each figure of merit or each
separate means of detection or isolation should be provided.

NOTE: Section 8 provides twu methods for accomplishing this task. In utilizing the
Section 8 methods, this section should include: 1) a definition of the logical relationship
between diagnostic outcomes and test outcomes, 2) the fraction of each fault class that
causes each diagnostic outcome, 3) the fraction of all faults causing each diagnostic
outcome, and 4) the finalfigure of merit (FFD or FF1).

6.0 ANALYSIS INPUTS TO MATURATION PLAN

After performing the analysis, it may be evident that improvements to the diagnostic
capability can be made or that there are potential risks associated with parts of the design.

Describe any improvements to the diagnostic capability or the primary equipment that could
resuit in significantly improved performance. Describe how performance can be monitored
during developmental testing, operational testing, and initial fielding of the diagnostic
capability to determine if these improvements are warranted.

Describe the potential risk areas and how performance can be monitored to determine if the
risk is realized. Outline the changes tha: may be required if the risk is realized.

State if the Government and contractor have elected to rectify any problems that are
uncovered during this analysis before a demonstration takes place. If changes to the
diagnostic system are made, the above analyses may be repeated and the results
summarized in an appendix.

9-4

SECTION 10

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

We have presented the rationale for, the development of, and an application of a two-phase

approach to the validation and demonstration of diagnostic system performance. The first phase

consists of a diagnostic test-effectiN eness anal) sis (supported by simulation and engineering

judgement) that is used to predict performance, in the most precise quantitative manner possible, as

a means to uncover any design deficiencies and to aid in the development of a maturation plan for

the diagnostic capability, if desired. The second phase consists of a demonstration, in a factory

environment, that verifies that the functional requirements, consistent with the assumptions and

conclusions of the test effectiveness analysis, have been met. We highly recommend the use of an

engineering prototype for this demonstration, to maximize the types of faults that can be inserted

and also the randomness of these insertions. In essence, this two-phased approach employs as

many fault insertion demonstrations as are practical and uses simulation and engineering judgemen.

as backup means for providing the Government with assurances of the quality of the diagnostic

capability being procured.

We feel that this effort is a reasonable first step in bridging the gap between current

pra,.tices, in which all too often there is little correlation between the diagnostic figures of merit

"denonstrated" and the subsequent fielded failure results, and the reliable, precise ideal, which is,

fur both numerical and knowledge acquisition reasons, impossible for modern electronic systems.

Ilou, ever, there are several additional activities from which this methodology could benefit:

* Qualitative and quantitative coverage information should be de% eloped for standard
testing strategies when applied to standard circuit types (e.g., how well does a
checkerboard test test a memory chip).

" More rules of thumb for estimating quantitative coverage, in the spirit of Section 8,
should be developed.

10-1

• The RAC Field-Failure Return Program should be expanded, and the results should
be used to standardize failure modes for both fault insertion and test analysis.
Significantly more effort is needed in the area of characterizing, perhaps parametrically,
major fault mode insertable/observable behavior. This RAC program represents the
best means for the Government to obtain information that presently is, or would be if it
existed, proprietary.

10-2

REFERENCES

Abraham, J.A. and W.K. Fuchs, "Fault and Error Models for VLSI,- Proc. IEEE, Vol. 74, No.
5, pp. 639-654, May 1986.

Aframwal, V.D. "Sampling Techniques for Determining Fault Coverage in LSI Circuits," in Test
Generation for VLSI Chips, Agrawal, V.D. and S.C. Seth, Eds., IEEE Computer Society
Press, Washington, DC, pp- 241-247, 1988.

Agawal, V.D. and M.R. Mercer, "Testability Measures-What Do they Tell Us?,- in Tururia!:
VLSI Testing and Validation Techniques, IEEE Computer Society Press, XWashiaiton, DC,
pp. 40 1-406, 1985.

Agrawal, V.D. and S.C. Seth, "Chapter IV: Test Evaluation,- in Test Generation for VLSI Chips,
Agawal, V.D, and S.C Seth, Eds., IEEE Computcr Society Press, Washington, DC, pp.
159-167, 1988.

Anderson, JM,"From a Sow's Ear - Quantitative Diagnostic Design Requirements fromi
Anecdotal References," Proc. ALbTOTESTCON14, Philadelphia, P.A, pp. 195-200, October
1989.

Anderson, WV. and S.C. Binari, "Radiation Effects in GaAs Devices and I~s,- Proc. Reliabilin,
Physics Syinposiwan, Phoenix, AZ, pp. 36-319, 1983.

Binnendyk, F. and P. Remeis, "Fault Grading: Test Analysis By Design," E.1cL-ronics Test, Vol.
12, No. 3, pp. 32-37, March 1989.'tI

Binnendyk, F., "Major Advances in Fault Grading Technology," Proc. ATE (- Ins rrwraenraran
Gonf. East, Boston, MNA, pp. 101-108. June 19089.

Breuer, M.A. & Associates and A.J. Carlan, "State-of-the-Art Assessment of Testing and
Testability of Custom LSJ/VLSI Circuits, Vol. III: Fault Mode Analysis," SD-TR-83-20,
Space Division, Air Force Systems Command, Los Angeles, CA, October 1983.

Brglez, F. "On Testability of Combinational Networks," in Test Gencraion for VLSI' Chips,
Agrawal, V.D. and S.C. Seth, Ed., IEEE Computer Society Press, WVashington, DC. pp.
293-297, 1988.

Carter, J.L., V.S. Iyengar, and B.K Rosen, "Efficient Test Coverage; Detcrmiiiation for Delay
Faults," Proc. Int'l Test confl, pp. 4 18S-427, 1987.

Case, G.R., "Analysis of Actual Mechanisms in CMOS Logic Gates," Prrc. Dcsi-n A t na ion
Confl, pp. 265-270, 1976.

Chang, H.P. and J.A. Abraham, "Use of High Level Descriptions for Spee-up of Fault
Simulation," Proc. Int'l Test Gonf., pp. 278-285, 1987.

R-1

Coit, D., W. Denson, K. Key, S. Flint, and W. Turkowski, "VLSI Device Reliability Models,"
RADC-TR-84-182, AD-A153268, Rome Air Development Center, Griffiss AFB, NY,
December 1984.

Cunningham, B.T., W.K. Fuchs, and P. Banerjee, "Fault Characterization and Delay Fault
Testing of GaAS Circuits," Proc. Int'l Test Conf., Washington, DC, pp. 836-842, 1987.

Debaney, W.H., "A Military Test Method for Measuring Fault Coverage," Proc. Int'l Test Conf.,
Washington, DC, p. 951, 1989.

Denson, W.K., "IC Failure Mode Distribution Summary," Personal Communication, August
1989.

Denson, W.K. and P. Brusius, "VHSIC/VHSIC-Like Reliability Prediction Modeling," RADC-
TR-89-177, AD-A214601, Rome Air Development Center, Griffiss AFB, NY, October
1989.

Devadas, S., "Delay Test Generation for Synchronous Sequential Circuits," Proc. Int'l Test
Conf., Washington, DC, pp. 144-152, 1989.

Franklin, M., K.K. Saluja, and K. Kinoshita, "Design of a BIST RAM with Row/Column Pattern
Sensitive Fault Detection Capability," Proc. Int'l Test Conf., Washington, DC, pp. 327-
336, 1989.

Fujiwara, H., Logic Testing and Design For Testability, MIT Press, Cambridge, MA, 1985.

Galiay, J., Y. Crouzet and M. Vergniault, "Physical Versus Logical Fault Models in MOS LSI
Circuits: Impact on Their Testability," IEEE Trans. on Computers, Vol. C-29, No. 6, pp.
527-531, June 1980.

Ghate, P.B., "Electromigration-induced Failures in VLSI Interconnects," Proc. Reliability Physics
Symposium, San Diego, CA, pp. 292-299, 1982.

Green, '.J., "Getting the Facts from the Field...Real World Failure Data Collection and Analysis,"
Government Microcircuit Applications Conf. (GOMAC) Digest 6f Papers, Orlando, FL,
pp. 105-109, October 1987.

Green, T.J., "A Review of Microcircuit and Hybrid Field Failures from Air Force Avionic
Equipment," Proc. National Aerospace and Electronics Conf., Dayton, OH, pp. 1544-
1548, 1988.

Green, T.J. and W.K. Denson, "A Review of EOS/ESD Fiela railures in Military Equipment,"
Proc. EOS/ESD Symposium, 1988.

Gruska, G.F. and M.S. Heaphy, "A Structured Approach to Meeting the DoD Quality Policy,"
P'oc. National Aerospace and Electronics Conf., Dayton, OH, pp. 1665-1673, May 1989.

Ho, P.S., "Basic Problems of Electromigration in VLSI Applications," Proc. Reliability Physics
Symposium, San Diego, CA, pp. 288-291, 1982.

Hoover, S.V. and R.F. Perry, Simulation-A Problem-Solving Approach, Addison Wesley,
Reading, MA, p. 198, 1989

R-2

Huisman, L., "The Reliability of Approximate Testability Measures," in IEEE Design & Test of
Computers, Vol. 5, No. 6, pp. 57-67, December 1988.

Humme), R. A., "Automated Fault i. ,:tion for Digital Systems," Proc. Reliability and
Maintainability Symposium, -os Angeles, CA, pp. 112-117, 1988.

Jain, S. and V.D. Agrawal, "Satistical Fault Analysis," in Test Generation for VLSI Chips,
Agrawal, V.D. and S.C. Seth, Eds., IEEE Computer Society Press, Washington, DC, pp.
234-240, 1988.

Lochner, R., "A Sequential Process for Total Quality Management," Proc. National Aerospace and
Electronics Conf., Dayton, OH, pp. 1641-1644, May 1989.

Malaiya, Y. and S.Y.H. Su, "Testability of VLSI Leakage Faults in CMOS," RADC-TR-83-202,
AD-A 138978, Rome Air Development Center, Griffiss AFB, NY, September 1983.

Maly, W., "Realistic Fault Modeling for VLSI Testing," Proc. 24th ACM/IEEE Design
Automation Conf., Miami Beach, FL, pp. 173-180, 1987.

Mangir, T.E., "Sources of Failures and Yield Improvement for VLSI and Restructurable
Interconnects for RVLSI and WSI: Part I-Sources of Failures and Yield Improvement for
VLSI," Proc. IEEE, Vol. 72, No. 6, pp. 690-708, June 1984.

Meth, M.A. and T.A. Musson, "Finding Faults-A Dilemma for Statisticians," Proc. Reliability
and Maintainability Symposium, Orlando, FL, pp. 351-355, January 1983.

Micro Control Company, "Standard Patterns for Testing Memories," Electronics Test, Application
Note, Vol. 4, No. 4, pp. 22-26, April 1981.

MIL-IIDBK-217E, U.S. Department of Defense, "Reliability Prediction of Electronic Equipment,"
27 October 1986.

MIL-I-38535, U.S. Department of Defense, "General Specification for Integrated Circuits
(Microcircuits) Manufacturing," December 1989.

MIL-STD-470A, U.S. Department of Defense, "Maintainability Program for Systems and
Equipment," March 1966.

MIL-STD-471A, U.S. Department of Defense, "Maintainability Verification/Demonstration/
Evaluation," March 1973.

MIL-STD-883, U.S. Department of Defense, "Method 5012 Fault Coverage Measurement for
Digital Microcircuits," 1989.

MIL-STD-2077 (AS), U.S. Department of Defense, "General Requirements for Test Program
Sets," March 1978.

MIL-STD-2165, U.S. Department of Defense, "Testability Program for Electronic Systems and
Equipment," January 1985.

Nagel, L.W., "SPICE 2: A Computer Program to Simulate Semiconductor Circuits," ERL-M520,
Department of EE and CS, University of California, Berkeley, CA, August 1981.

R-3

Papadimitriou, C.1I. and K. Steiglitz, Combinatorial Optimization, Algorithms and CompleAity,
Prentice Hall, Englewood Cliffs, NJ, 1982.

Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw Hill, New
York, 1965.

Rossi, M., "Microcircuit Device Reliability-Field Experience Database," FMDR-21 A, Reliabilit,
Analysis Center, PO Box 4700, Rome, NY, June 1986.

Seth, S.C., L. Pan, and V.D. Agrawal, "PREDICT - Probabilistic Estimation of Digital Circuit
Testability," in Test Generation for VLSI Chips, Agrawal, V.D. and S.C. Seth, Eds.,
IEEE Computer Society Press, Washington, DC, pp. 298-303, 1988.

Sie, C.H., R.A. Youngblood, J.H. Liao, and A. Turk, "Soft Failure Modes in MOS RAMs,"
Proc. Reliability Physics Symposium, Las Vegas, NV, pp. 27-32, 1977.

Siewiorek, D. and R. Swarz, The Theory and Practice of Reliable System Design, Digital Press,
Bedford, MA, 1982.

Simpson, W. R., J.H. Bailey, K.B. Barto, and E. Esker, "Prediction and Analysis of Testability
Attributes: Organizational-Level Testability Prediction," RADC TR-85-268, Rome Air
Development Center, Griffiss AFB, NY, Februaiy 1986.

Stockman, S. and D. Rash, "Microcircuit Device Reliability Trend Analysis," RAC Doc. MDR-21,
Reliability Analysis Center, PO Box 4700, Rome, NY, July 1985.

Thomas, J.J., "Automated Diagnostic Test Program for Digital Networks," Computer Design, pp.
63-77, August 1971.

Timoc, C., M. Buehler, T. Griswold, C. Pina, F. Scott, and L. Hess, "Logical Models of
Physical Failures," Proc. Int'l Test Conf., Philadelphia, PA, pp. 546-553, November
1983.

U.S. Air Force, "MATE TPS Verification Guidelines," USAF Doc. 2806645 Rev. B, 1 April
1985.

U.S. Air Force, "RADC Reliability Engineers Toolkit," Systems Reliability and Engineering
Division, Rome Air Development Center, Griffiss AFB, NY, July 1988.

U.S. Army Program Manager for TPS, "TPS Procedures Manual-Rev. 1," AMCPM-TMDE-T,
Fort Monmouth, NJ, 1987.

U.S. Department of Defense, "Total Quality Management Master Plan," August 1988.

Wad. ack, R., "Fault Modeling and Logic Simulation of CMOS and MOS Integrated Circuits," Bell
System Technical Journal, Vol. 57, No. 5, pp. 1449-1473, May-June 1978.

Weiss, J.L., M. Doyle-Buckley, and J.C. Deckert, "A Prototype Test-Engineering Workstation
for Analog Electronics," Proc. ATE & Instrumentation Conf. East, Boston, MA, pp. 539-
550, June 1989.

Williams, T.W., W. Daehn, M. Gruetzner, and C.W. Starke, "Aliasing Errors in Signature
Analysis Registers," Proc. Int'l Test Conf., Washington, DC, pp. 282-288, 1986.

R-4

Wong, K.L., J.M. Kallis, and A.H. Burkhard, "Culprits Causing Avionic Equipment Failures,"
Proc. Reliability and Maintainability Symposium, Philadelphia, PA, pp. 416-421, 1987.

Zins, E. and G. Smith ,"R&M Attributes of VHSIC/VLSI Technology," Proc. Reliability and
Maintainability Symposium, Philadelphia, PA, pp. 403-406, 1987.

R-5

APPENDIX

APPLICATION OF THE METHODOLOGY TO A
MODERN MILITARY ELECTRONIC UNIT

A.1 INTRODUCTION

In this appendix we provide an illustration of the application of the methodology developed

in the body of this report to the Prognostic Diagnostic Interface Unit (PDIU), a modem Army

electronic unit developed by GE-ASD to perform diagnostics and limited prognostics for the

M109E5 Improved Howitzer. Specifically, we use the methodology to validate and demonstrate

the PD11J's self-test capability. Subsection A.2 provides a self-contained Test-Effectiveness

Analysis Report for the PDIU self-test feature, which serves as an example of an application of the

guidelines given in Section 9. Subsection A.3 contains a self-contained Demonstration Plan for the

PDIU self-test feature, an example of an application of the guidelines given in Section 7. This plan

incorporates the physical and software insertion techniques of Section 6. Finally, subsection A.4

provides a summary and conclusions from the demonstration effort.

A.2 PDIU TEST EFFECTIVENESS ANALYSIS REPORT

This subsection consists of a self-contained Test-Effectiveness Analysis Report for the

PDIU's self-test feature. All section, subsection, figure, and table numbers are internally consis-

tent, but they are not consistent with the other portions of this report.

The primary purpose of this subsection is to illustrate the application of the techniques

developed in this report, organized according to the guidelines presented in Section 9, to a modern

military electronic unit. Because of the limited scope of this effort, only the probabilistic analysis

methodology of subsection 8.3 is employed here. In an actual application, use of the more

tedious-but also more accurate-set-theoretic analysis methodology of subsection 8.4 would

probably be preferable.

A-1

TEST-EFFECTIVENIESS ANALYSIS REPORT FOR THE
PROGNOSTIC DIAGNOSTIC INTERFACE UNIT

A-2

CONTENTS

Section Page

LIST OF FIGURES ... A-4

LIST OF TABLES .. A-4

1 INTRODUCTION.. A-5

1. 1 Purpose.. A-5
1.2 Scope ... A-5
1.3 Analysis Overview .. A-6
1.4 Applicable Documents .. A-8

2 DEFINITIONS... A-9

2.1 Fault Classes..A-9
2.2 Description of the PDIU Self-Test Feature A-9
2.3 Hardware Configuration of the PDIU A-16

3 TEST APPLIC"ABILITY ANALYSIS A-21

4 FAULT ACCOUNTABILITY ANALYSIS A-22

5 PREDICTION OF FED .. A-25

A-3

LIST OF FIGUREiS

Number pae

1 PDU Configuration ... A-7

2 PDIU Processor Board Configuration .. A-17

3 PDIU Memory Board Configuration ... A-18

4 PDIU I/O Board Configuration .. A-19

LIST OF TABLES

Number Pane

1 PDIU Fault Classes and Failure Rates .. A-10

2 PDIU Tests .. A-22

3 PDIU Fault Accountability Matrix .. A-23

A-4

1. INIRODUCTION

1.1 PURPOSE

This report presents a detailed diagnostic test-effectiveness analysis of the self-test feature

of the Prognostic Diagnostic Interface Unit (PDIU). The objective of this report is to provide a

prediction of the fraction of field-faults detected (FFD) by the PDTU self-test capability and to

document the PDIU faults that are, and are not, detected by PDIU self-test.

1.2 SCOPE

Th,. primary mission of the PDIU is to perform diagnostics and limited prognostics on the

Army M109E5 Improved Howitzer. The PDIU performs three major functions: 1) the Operational

Mode function, in which the PDIU monitors major howitzer subsystems, 2) the Maintenance Mode

function, which supports Howitzer fault detection and isolation activities at the unit level, and

3) PDIU self-test. The PDIU self-test feature performs fault detection on the PDIU itself. This

report is an analysis of the PDIU self-test fault detection capabilities (no fault-isolation capability

is provided in the PDIU self-test and is therefore not considered here). All software, including

self-test software is stored in non-volatile EEPROM memory within the PDJU.

The PD[U self-test feature consists of three distinct features: 1) Power-Up Confidence

Test (PUCT), 2) On-Demasd/On-Event (OD) tests, and 3) Continuous Monitoring (CM) mode.

On PDIU power-up, a BIT Lamp on the PDIU casing is turned on and the PUCT routines are run.

This lamp remains on during PUCT operation. If no fault is found by PUCT, then the BIT lamp is

turned off. If tf:e lamp remains on, a fault is indicated. Additionally, faults are indicated by

transmission of a fault code messagt, over the RS-422 bus to a display and cor.rol unit (DCU),

which causes a message to be displayed to the operator on a CRT. On-Demand tests occur when

they are requested by the operator through the DCU when the PDIU is in maintenance mode.

Similarly, On-Event tests are automatically run during specific events that are initiated by the oper-

A-5

ator from the DCU. The continuous monitoring feature operates during execution of application or

system software by the PDIU processor. CM mode consists of a watchdog timer I/O board refer-

ence voltage test, and processor board supply voltage test. The watchdog timer must be reset by

any application code being run by the PDTU processor. If the reset fails to occur, then the BIT

lamp is again turned on, PUCT is run, and the BIT lamp set according to PUCT results.

For this report, the means of detection are defined by operator recognition of a fault

through either the BIT lamp, the display of an error message on the DCU, or both. Three separate

fault detection mechanisms will be examined: 1) detection of faults by PUCT; 2) detection by

sequential execution of all OD tests; and 3) detection during CM mode.

The fault universe considered for this report will be limited. The entire PDIU is composed

of six major boards and interconnections between boards (see Fig. 1). These major boards consist

of a processor board, two memory boards, an I/0 board, a signal protection/MUX board, and a

power supply board. To limit the scope of this report, the fault universe will consist only of faults

in the non-external-interface portions of the PDIU processor, memory, and I/O boards (all compo-

nents except the 1553 chip-set and the RS-422 transceiver components).

1.3 ANALYSIS OVERVIEW

The analysis of the PDJU self-test capability presented in this report consists of a qualitative

fault-coverage analysis and a quantitative prediction of fraction of faults detected (FFD) by PDIU

self-test during field operations.

Qualitative coverage is presented by reference to the PDIU Failure Mode Effects and

Criticality Analysis (FMECA) in which all major fault modes of the PDIU are derived (I]

(references in this report refer to those listed in subsection 1.4). For each fault mode, the test

steps within the PDIU self-test capability that may detect that fault mode are listed. If the fault

mode has the possibility of being undetected, an explanation of how this situation might occur is

given.

A-6

AA L

MEMORY
-1. BOARD

4 idss3 PROCESSOR
O3 BUS

D(n BOARD

L 422 L
C COM I

Figure0 1_0 1D ofiuato

< < , BOARD

POWER
_US. POWER

SUPPLY lt U

S SIGNAL
PROTECTION/

MUX
BOARD

PWR DIAGNOSTIC STIMULI BIT SENSOR
Indicator PORT OUTPUTS indicator INPUTS
Lamp (wlRS422) Lamp

Figure 1. PDIU Configuration

Quantitative prediction of FFD is accomplished by the probabilistic fault-accountability

approach discussed in [2]. For each fault class discussed in the qualitative coverage analysis,

a percentage figure is given for each test step that is capable of detecting that fault class. The

percentage figure represents the fraction of physical faults encompassed by tie fault class that are

actually detected by the specified test-step. These figures are determined by engineering analysis

alone. No fault simulation has been used to derive these numbers. For each fault class, the

fraction of physical faults encompassed by that fault mode that will cause the primary diagnostic

outcome to occur is computed. It is then assumed (realistically) that the fault classes are disjoint

(there is no common physical fault that can cause failures in more than one fault class) and FFD is

A-7

computed. If fi is the fraction of fault class i faults that cause the primary diagnostic outcome

(determined by the above accountability analysis), then FFD is computed by

xi fi
FFD=

where X is the failure rate for the fault class i.

This analysis was performed after the PDIU was fully designed, tested, and accepted. No

changes to the PDIU hardware or its self-test software were made as a result of this analysis.

1.4 APPLICABLE DOCUMENTS

1. Failure Mode Effects and Criticality Analysis for the PDIU, GE Document, CDRL
A 119, Prime Contract DAAA21-86-C-0023, February 1987.

2. "Analysis Methods," Section 8 in Analysis andDemonstration of Diagnostic
Perfonnance in Modern Electronic Systems, Final Report on Contract F30602-88-C-
0068, TR-494, ALPHATECH, Inc., March 1991.

3. Testability Analysis for the CID for the MIA2, GE Document, SDRL 023B, Letter
Subcontract WPGO00313, Prime Contract DAAE07-89-C-R045, 18 July 1990.

A-8

2. DEFINITIONS

2.1 FAULT CLASSES

This subsection defines the hardware fault classes of the PDIU self-test feature considered

in this report. Table 1 indicates the fault classes for the PDIU, exclusive of the powe. supply

board, which was excluded from PDIU self-test requirements due to other preferable means of

coverage. Additional fault classes that were intentionally excluded from PDIU self-test coverage

for the same reason are shown with strikethroughs in Table 1. Only the remaining fault classes

will be intluded in this study. Table 1 also indicates the failure rate for each fault class in failures

per million hours (FPMH).

The failure rates for the fault classes in Table 1 were determined in the fullowing manner.

(This approach was taken in order to avoid performing another FMEA for the PD1U for this effort,

since the FMECA in [1] did not develop failure rates for the indi, idual fault classes on each board.

Also, while [1] did enumerate high-le,,el component failure modes, no failure rates were developed

for those modes.) First, the failure rates for each board had been determined in compliance with

the MIL-HDBK-217D parts-count method [1]. Next, we utilized the FMEA [3] performed for

another GE-ASD product, the Commander's Integrated Display (CID), v. hich has functionality,

components, topology, and fault classes similar to the PDIU. We used the fraction of the failure

rate for each fault class of the CID relative to its total board failure rate to calculate the

corresponding PDIU fault class failure rate from its board failure rate. These resulting fault class

failure rates were then adjusted, where necessary, for the presence of multiple devices.

2.2 DESCRIPTION OF TIE PDIU SELF-TEST FEATURE

Overview

The PDIU is designed with several levels of self-diagnostic capabilities. These include the

Power-Up Confidence Test (PUCT), On-Demand/On-Event (OD) Tests, and a Continuous

A-9

TABLE 1. PDIU FAULT CLASSES AND FAILURE RATES

7?ult Gass Componl Falure Rate
Componcrt Group (FPMI)

Proccr Board

210 Microproccssorand 10.5
Support Electronics

220 LocalBus (Address Latch 1.5
and Conurol Signal Buffer)

230 Station Bus (Address Latch. 4.8
Data and Control Transecival

240 BuffcrfTransccivcr Control 2.0
Circuitry (PAL & GlueLogic)

260 SRAM (32K x 16) 12.8
270 1553 SRAM (2K x 16) 0.8
280 PROM 6.4

2A0 1553 Rcmomt Tcrminal Intcface 15.1

Mcmniv Hord (Each. To Total)

310 EEPROM Memory De-ic=s (24-4K x 8) 48.0
320 Decode and Control 20.0
330 Station Bus and DTACK Gncrtor 1.2

410 Popgranmable Contc fiTr 2.0
420 DEcode -nd Control DItesface 1.5
430 Station Bus and DTACK Gcn--zor. 1.2
440 BIT I.a, Dnvr 0.2
450 Vcc ?,-<ite+ 2.0
460 AD Co,,vc-:rs 2.5

_: s

Monitoring (CM) mode. PUCT occurs automatically %vhen the PDIU is initially powered up and

after a system reset. In addition, PUCT can be initiated by the operator through the DCU when in

maintenance mode, and PUCT is run w+henevcr certain events occur during the operation of the

PDIU that cause a system reset (e.g., watchdog time-out, error in EEPROM chccksum). During

the operation of the PDIU, the CM %atchdog timer test and voltage checks are continuously

executed to monitor systcm operation f, dclity. If a failure prevented the PDIU's system software
from reetting the timcr in the normal periodic manner, the watchdog tmer resets the PDIU and

initiates PUCT. Folloving such a reset, the PDIU rep<.rts the watchdog time-out error to the DCU

A-10

and uses PUCT to verify system failures. If at any time a test fails, a software hook is set. The

software hook is coded such that each bit in the software hook corresponds to a different test. In

this way, it is tasy to recover the status of all of the self-test procedures. PDIU self-test failure

detections are brought to the operator's attention by turning on the PDIU BIT failure indicator lamp

(see Fig. 1) and sending an error or warning message to the DCU (if the failure does not prevent

fault reporting).

Power-Up Confidence Test (PUCT)

The PDIU contains procedures that test its processor, memory, and hardware timers.

Since these tests will interfere with the operation of the system, they must be run before the Ada

Run-Time Environment (RTE) is initialized. Consequently, all tests are written in assembly

language and run immediately after a power-up reset. These tests store their results in designated

memory locations that can be accessed during system operation. After execution of the PUCT,

control passes to the initialization code for the Ada RTE.

If PUCT did not detect any failures, the PDIU BIT failure indicator lamp will be turned off.

Otherwise, the lamp will be left on, and the PDI1U will send an error message to the DCU

(provided that the failure does not interfere with the mechanism for doing so). PUCT normally

takes approximately five seconds to complete.

The PUCT consists of three major test groups: 1) Processor Test, 2) RAM Test, and 3)

Timer Test. These tests are now described in more detail.

PROCESSOR TEST

The processor test portion of PUCT tests the 80186 processor's registers, addressing

modes, and instruction set. If any of these tests fail, the PUCT software jumps to an ERROR

routine, and the processor has failed the processor check. The STATUS CODE, stored in 80186

register AX, has bit one, the processor bit, set to 1. This signifies that the processor check failed.

Control is then passed to RAM test.

A-11

Instruction Set Test

All but six 80186 instructions are tested (92 out of 98 instructions). The instructions not

included are: LEA, ESC, LOCK, HLT, WAIT, and BOUND. The instructions are tested by

comparing the execution of the particular instruction with the expected result. An error is found if

the instruction does not execute properly or yield the expected result. The flag and jump instruc-

tions are tested first to insure the validity of their use throughout the remainder of the processor

test.

Register Tests

The general purpose registers and segment registers are tested by writing a value to each

register and reading back the value to determine if the registers can be written to and read from

correctly.

The eight 16-bit general purpose registers are written with alternating Is and Os (AAAAH

and 5555H) and read to check for errors. The test is a wraparound test, in which one register is

written with data and the data is then passed to all registers sequentially.

The segment registers are tested similarly to the general purpose registers, verifying that

each can be written to and read correctly. This test requires the use of the CS and IP registers as

the program counter and assumes that they are fault-free. If either of these registers is faulty, this

test will yield unpredictable results. Therefore, if the test is executing correctly, it is implied that

the CP and IP registers are functioning properly, and they do not have to be explicitly tested. If

any error is found, the test fails, and a software bit is set.

Address Test

All eight addressing modes of the 80186 (register operand, immediate operand, direct,

register indirect, based, indexed, based-indexed, and based-indexed with displacement mode) are

tested. Immediate and register addressing modes are used to set up registers AX, BX, CX so that

the remaining modes can be tested. The remaining modes are tested by writing a known value to

A-12

whichever location is specified and comparing the value read with the expected value. The test

fails if there is a difference between the expected value and the actual value.

RAM TEST

The PUCT tests every RAM location on the processor board (all 64K of RAM). This

includes the SRAM dedicated to the microprocessor and the SRAM shared with the 1553B remote

terminal interface (RTI). The RAM test consists of first writing alternating Is and Os (5555H) to

each RAM location, and then reading back this data to verify proper functionality. If correct data

are found, then AAAAH is written to each location, to complete the test for stuck-at memory

locations. Once again, the RAM is read and if all the data are correct, then this portion of the

PUCT has passed. If at any time during the RAM test incorrect data is encountered, a software

hook bit is set indicating a failure in the RAM test, and the PUCT moves on to the next test.

When the test is successfully completed, the status code is copied from register AX into

RAM location 8000H. If RAM test finds a faulty location, location 7FFFt contains the first faulty

location encountered. If a faulty 1553 RAM location is found, the 1553 RAM bit is set and the

faulty location is stored in 7FFEH.

PROCESSOR TIMER TESTS

The Intel 80186 microprocessor uses three internal timers, whose count rate is derived

from the internal CPU clock rate. This test checks the operation of the 80186's timers. This test

tests two conditions of these timers: the timers' counting ability and the timers' overflow handling.

Both of these conditions are tested in the same manner. A counting loop of known run time is

executed. When the loop is finished, the counter register value is compared with the expected

value of the loop. For the first condition, if the counter register value is within 10 percent of their

expected value, then this portion of the test has passed. For the second condition, the MAX Count

value is set such that executing the counting loop will cause the counter register to overflow. Upon

overflow, the timer should reset to zero. The high and low limits for this test are both 0, the

overflow value. The third timer is only tested for its counting ability because it is driven by the

A-13

second timer, which has already been tested. If at any time a failure is encountered, a software

hook bit is set corresponding to the processor timing test, and the PUCT moves on to the next test.

I/O BOARD TIMER TESTS

The I/O board has three wrap-around timers. The tfimer is set so that it will wrap around.

The test program loop is then run, and the value of the timer is checked at the end of the loop. The

test has passed if the value stored in the timer is within 10 percent of the expected value. Two of

the three timers are tested in this manner. The third timer is the watchdog timer. This is tested by

setting the timer value high enough such that the timer will not reach zero (i.e., overflow) by the

time it is checked following a software timing loop.

On-Demand/On-Event Self-Tests

On-Demand tests are executed when the operator request a specific test via the DCU.

On-Demand tests include execution of PUCT and tests on EEPROM, analog input paths, and

voltage sources to ensure functionality of all hardware components. When executed, each of these

test subprograms returns a parameter indicating that the test passed or a code identifying which

portion of the test failed. In addition, this unit contains a module that allows resetting of the

watchdog timer before it times out. On-Event tests occur after certain normal PDIU events such as

the making an analog measurement and writing to/from the EEPROM data space. Details of the

On-Demand/On-Event (OD) tests are given below.

PROCESSOR BOARD PROM TEST

The 16K bytes of PROM on the processor board are tested by performing a checksum. If

the value of the output of the test does not agree with the stored value, then an error is detected and

logged in the software hook.

1553B SELF-TEST

The 1553B self-test is initiated by the 1553 bus controller at the DCU which issues a self-

test command. The 1553B RTI decodes the message and begins the self-test after the host

A-14

computer detects this data and resets the RTI. At the end of the 1553B self-test, the the following

commands have been tested: initiate self-test, transmit, receive, synchronize, reset remote terminal

and transmit status word. These tests are performed on both the A and B channels to thoroughly

test the RTI. The results of the self-test are stored in memory location 413H and are read by the

DCU when the bus controller issues a transmit BIT word code.

MEMORY BOARD EEPROM TEST

For On-Demand testing,.EEPROM on the memory board is tested by performing a

checksum calculation verification. In this test the current memory contents are used to calculate the

checksum and the result is compared to the value that already stored in memory. Since EEPROM

is updated during the normal operation of the PDIU, software has been provided to modify and

update the value of the checksum. This will prevent false error messages from occurring. If the

output value of the test is different from the stored checksum value, an error is detected and the

appropriate software hook bit is set.

I/O BOARD ANALOG DATA ACQUISITION TEST

This test is designed to determine the integrity of the hardware in the analog data acquisition

path on the I/O Board. It includes tests for: faulty A/D reading, any error bringing a constant

reference voltage through the analog path, and A/D output not varying linearly with the input. This

last test is accomplished by varying the input voltage, the programmable filter value, and the

programmable gain amplifier.

Continuous Monitoring

WATCHDOG TIMER

Approximately every 30 seconds the system software will reset the watchdog timer to a

value of 66 seconds. If the watchdog timer is allowed to time-out (i.e., system software failed to

reset it in the allotted time) the PDIU status lamp will be shut off, and the PDIU will be reset. The

A-15

ensuing PDIU power up will find (by reading an EEPROM location) that the previous shutdown

was abnormal and send a message to the DCU indicating this fact.

REFERENCE VOLTAGE TEST

Additionally a form of continuous background test exists for the I/O board. Immediately

prior to every measurement taken on the I/O board during normal operations, a reference voltage is

switched in and measured to verify the soundness of the I/O board measurement path.

VCc MONITOR

A drop in the +5 volt supply (Vcc) below a preset threshold of approximately 4.65 volts is

detectable by the Vcc Monitor circuitry on the I/O board. Vcc is sensed on the Processor Board by

a pair of sense lines, and input to the Vcc Monitor on the I/O Board. The Vcc Monitor circuitry

issues a reset signal to the processor if Vcc falls below the threshold, below which timing

parameters for the processor are not guaranteed. A reset signal is issued to ensure that the

processor does not write invalid data into EEPROM memory when Vcc is below the threshold.

2.3 HARDWARE CONFIGURATION OF THE PDIU

PDIU Processor Board

The core of the processor board (see Fig. 2) is the 16-bit Intel 80186 microprocessor

(6 MHz military version). The microprocessor communicates with the local board functions via a

(proprietary) local bus. The local bus consis:t, of the address, data, and control lines that run from

the 80186 microprocessor to other circuitry on the processor board. The processor board provides

a station bus interface for communicating with the other PDIU boards. The station bus consists of

the address, data and control lines which run betveen the processor board, I/O board and memory

board.

For external communications the processor board provides RS-422 circuitry and MIL-STD

1553B RTI hardware. The RS-422 circuitry consists of a transceiver and a USART (Universal

Synchronous Asynchronous Receixer Transmitter) and is intended to interface with a portable

A-16

270
7 be)

Fiure2._ PDIU P e rm oard IC f igurati Iomaintnancaidor pIpheralequipmnt. The5, 5Interfe cm e it t

On-board, memory. Conist o 16K bye of. EEPROM, 64 Iye of deiae -RMn
4K~~ ~~ bye oSRMsAdres with the 153 RI The EEiRn is used foLytmiitaiain

while the de it SA isueto l Pocatngineru t vectolrols an t:n lmnso h d

Languag System

PDJ.Me mory Boards

Th DUmmr boards sevysetnsoso th prcso ordmmr.Ec

for th storage of I softwar an vro Onstan. P roammab)ds i
t o t ar the EE M Dat, onAec r eory boar itac

I 5,9n. I -. . : - r -

board over th P IU + Processor Con ig buus.

ADO-ADIS and0 -e -s of - -oItzer.E

Languag (PALstem.PA

boar (se ign3 onsst of2 x8EPRMsfratalo19KbesfEERMud

board~ over ther PDU sttinus

IA-17,-T

' I 8S0I - 1:'... . ."

I' -p..l - 1" -- :": - " "

: 3O ,,u~3 GNIAO

320

0~ BU10E Board'

, ~ . DEOD k . II'

The PDIU I/O board (see Fig. 4) serves as a link between outside signals and the PDIU

processor board. The I/O board receives conditional analog and digital signals from the SP/MUX

~(Signal Protection/Multiplexer) board and makes them available to the microprocessor. The

entering signal proceeds through the final multiplexers into a differential amplifier. The output of

the amplifier passes through a programmable filter, into a programmable gain amplifier and finally

through a 12-bit A/D) converter. The output of the A/D converter is available to the station bus and

can be read by the processor board. The I/O board also drives the BIT failure indicator lamp.

PDIU SP/MUX Board

The PDIU SP/MUX board protects the PDIU electronics from damage due to faults and

high voltage transients on the incoming signal lines. Overvoltage protection, short-circuit

protection, and protection against inadvertent grounding is supplied. Attenuation networks are

used where necessary to reduce the signal voltages to a safe level for the 1103 board to read. The

SP/MUX board also provides the first and second level of signal input multiplexers. The

A-i8

ARD IINPUTS r-. ;OAND FN1WAE Aw IE __40. GA 0 a

SELF TESSRG
VOLTAGE

Fiur 4.PJ /OBadCnfgrto

mOdats Tfwa s ot"
a ,di

'tr(INCE AND ~ [L.|

PROCESSOR
BOARD

'
SENSE

enilsga htge otefia utpeeslctdo h I/ board

PVS 1 POWER• II I S/l u

7 STATU &D TR (TTP

Fi ur 4.. LOCAL BUSord C n g rto

PDIU Motherboad

Thie PDIU motherboard supplies the interconnections required for communication between

hardware on different boards. The motherboard includes the station bus and I/O data bus between

the !/O and SP/MIUX board. The power lines included in the station bus consist of +5V, +15V,

-15V, analog ground, and digital ground. It supplies power to all PDIU boards. The station bus

also provides the data, address, and control lines of the 80186 to the IGO board and SP/MUX

board. The station bus is used to set up the multiplexers on the SP/MUX board and return input

signals.

C AA-i9

PDIU DC-DC Converter

The PDIU DC-DC converter receives conditioned 28V DC input power from the howitzer.

All electrical conzicctions to the DC-DC converter are made via plug-in connectors. From this input

voltage the converter supplies three regulated outputs: +5V, +15V, and -15V. The +5V output

has its own return, while the +/- 15V outputs share a common return line. The converter has a

maximum power output of 40 watts.

A-20

3. TEST APPLICABILITY ANALYSIS

This optional analysis was not performed for the PDTU.

A-21

4. FAULT ACCOUNTABILITY ANALYSIS

For this study, we assume that a fault is detected if either the BIT Lamp remains on for

more than about one minute or any error message is displayed on the DCU (or both). Since there

are several entry points to the PDIU self-test software, we will provide separate fault coverage

predictions for each entry point: 1) PUCT; 2) serial execution of all OD tests; and 3) CM mode.

Table 2 indicates the diagnostic tests comprising the PDIU self-test feature and their test

designators. Note that for each cf these self-test modes, detection for the mode (PUCT, OD, and

CM) occurs if any one of its subordinate tests detects a fault, and self-test detection occurs if any

mode detects the fault (i.e., the detection logic is union for all modes and self-test itself).

TABLE 2. PDIU TESTS

TEST NAME TEST DESIGNATOR

PUCT P
Processor Test P.1

Instruction Set Test P.1.1
Register Test P.1.2
Address Test P. 1.3

RAM Test P.2
Processor RAM P.2.1
Shared RAM (1553) P.2.2

Timer Tests P.3
Processor Internal Timers P.3.1
I1/0 Board Timers P.3.2

On-Demand Tests OD
Processor PROM Test OD.1
1553B Self-Test OD.2
Memory Board EEPROM Test OD.3
1/0 Board Data Acquisition Test OD.4

Continuous Monitoring CM
Watchdog Timer CM.1
I/O Board Reference Voltage Test CM.2
Processor Vcc Monitor CM.3

Table 3 contains the fault accountability matrix that provides the coverage information

linking the PDIU diagnostic tests and the PDIU fault classes. The coverage figures for the

A-22

0) r. C) 0) 0))) C) C! C!c

- - - - q - - - 0 c

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tf)

0 0 0 01 01

000
0 0 0 0 0 0 0 0 0 0 0 0 0 L)C

u mC 000

o 0 00 0 0 0

0) 0 0 0 0 0 0 0 0

00 0 0 ~0 00 0__

-~~~~~C C B B N C C

00 0. 0 ol

u o C o C Co0 0 0 o~o

0 C)* P. CO) O M ciR 5

~.~ 0 0) 0 ~ 1-tl0000) N 00 E0
U- 0) 2 0 aa a .

080 ofU o~~lC) 010 o .0 .0 0 .0 0 OI.) c

CCa 0 0 S

_3 .
0

00o 0 0 8

H , U c 0 c
,< zV1 .O . .

NO 0 0 0 C
0D 0

U 5 5 5 B

oL 0

~~c .a

0..o

0 0: 6 o 6 0 0 6 0 (5 C5 cso 6 ; s <

o 0 0 0~ 0 -i

oo 0 000 0000000 0- 0 I 0 C C) - 0.. C 0. 0.. a 0.

0: 6C;Ld o C; Lo0CL o - oCL 0 0 0 0 0

*l

0L 0 0

0 0;

10 01

a. 0 'I CiDi0 0~

O 0 0 0 0 0 0 0 0 0 0 0 0

-- N)) C IU

A-23

individual tests (e.g., P.1.1) in Table 3 are based on the PDIU FMIECA [1] and engineering

judgement. Each coverage figure represents the fraction of times a failure in that particular fault

class will be detected by that particular test.

A-24

5. PREDICTION OF FFD

For each fault class in Table 3, an overall coverage figure is given for ea.,I high-level test

group (i.e., PUCT, OD, and CM), and for the total of all of the diagnostic tests. These figures,

are based on the FMECA and engineering judgement, and take into account the overlap that exists

for some individual tests and fault classes. For comparison, a figure is given in parentheses (if it is

different) that is calculated using the probabilistic methodology of [2], assuming all test outcomes

are independent (i.e., no test overlap), i.e., p(a+b)=p(a)+p(b)-p(a)p(b). (Note that the figure

assuming independence is always larger, and that in general the two numbers are similar for the

total of all of the tesu for a particular fault class.) The last row in the table indicates the sum of the

failure rates of all of the PDIU fault classes (201.7 FPMH), and the estimated failure rate detected

by the PDIU diagnostic tests computed using the two methods discussed (171.5 FPMH and 182.1

FPMH). Thus, the estimated FFD for the PDIU self-test feature is 85 percent (90 percent if we do

not account for test overlap).

A-25

A.3 PDIU DEMONSTRATION PLAN

This subsection consists of the Demonstration Test Plan for the PDIU self-test feature. The

primary purpose of this subsection is to illustrate the application of the techniques developed in this

effort, organized according to the guidelines presented in Section 7. To support this purpose, this

subsection is self-contained. Therefore, all section, subsection, figure, and table numbers are

internally consistent, but they are not consistent with the other portions of this report.

A-26

DEMONSTRATION PLAN FOR THE PDIU
SELF-TEST FEATURE

A-27

CONTENTS

Section R'age

LIST OF FIGURES ... A-30

LIST OF TABLES ... A-30

I INTRODUCTION ... A-31

1.1 Purpose .. A -31
1.2 Scope ... A -31
1.3 Overview of the Demonstration Procedure A-32

1.3.1 No-Fail Demonstration Procedure A-33
1.3.2 Fault Insertion Demonstration Procedure A-34
1.3.3 Diagnostic Error Handling .. A-35
1.3.4 Acceptance Criteria .. A-35

1.4 Responsibilities ... A-36

1.4.1 Contractor Responsibilities ... A-36
1.4.2 Procuring Agency Responsibilities A-36

1.5 Support Requirements ... A-36

1.6 Applicable Documents ... A-37

2 COMPLIANCE DATA ... A-38

2.1 Number of Faults ... A-38
2.2 Percentage of Fault Classes Demonstrated A-38
2.3 Percentage of Failure Rate Demonstrted A-38
2.4 Percentage of Diagnostic Features Demonstrated A-40
2.5 Diagnostic Outcomes Demonstrated .. A-40

3 DETAILED DEMONSTRATION PROCEDURE FOR OPERATIONAL
SY STEM ... A -42

3.1 Test Setup ... A -42
3.2 Demonstrate PUCT/OD Tests in a Fully Operational PDIU A-43
3.3 Demonstrate the Watchdog Timer pionitor for a Fully Operational PDIU.. A-44
3.4 Demonstrate the Vcc Monitor for a Fully Operational PDIU A-45

4 DEMONSTRATION PROCEDURE FOR FAULTY SYSTEM STATES A-46

4.1 Hardware Fault Insertion .. A-46

A-28

CONTENTS (continued)

Section Pave-

4.1.1 Fault-Insertion Demonstration Procedure Template A-46
4.1.2 Fault Classes and Primary and Alternate Faults To Be Inserted ... A-49

4.2 Fault Emulation Demonstrations .. A-53

4.2.1 Fault Emulation Demonstration Procedure Template A-53
4.2.2 Fault Classes and Alternate Faults To Be Emulated A-55

4.3 Fault Classes Not Demonstrated .. A-57

5 DEMONSTRATION RESULTS .. A-59

Appendix

A DEFIN ITIO N S .. A -61

B HARDWARE FAULT INSERTION TECHNIQUES A-62

C FAILURE RATE OF PDIU FAULT INSERTIONS A-64

D PDIU CARD ASSEMBLY DRAWINGS .. A-75

A-29

LIST OF FIGURES

Number Po

1 Demonstration Setup ... A-42

LIST OF TABLES

Number P~

1 DCU Error Messages and Error Codes for the PDIU A-33

2 Demonstration Hardware Requirements..................................... A-37

3 Comprehensiveness of PDIU Fault Insertions............................... A-39

4 PUCT Status Codes ... A-45

5 Demonstrated Failure Rate Summary A-74

A-30

1. INTRODUCTION

1.1 PURPOSE

This document is a description of the Demonstration Plan (DP) for verifying the self-test

feature of the Prognostic Diagnostic Interface Unit (PDIU). The PDIU is a 80186-based system

with analog and digital measurement features, data communication interfaces, and provisions for

interaction with the soldier/operator conducting the test. The PDIU has no fault isolation require-

ments, but the results of its diagnostic tests can facilitate fault isolation by a trained technician.

The intention of this DP is to demonstrate to the Government that the self-test capability of

the PDIU has been constructed in accordance with its fault detection and isolation design require-

ments [1 - 2] (references in this DP refer to those listed in subsection 1.6). A description of the

PDIU and an overview of its self-diagnostic capability is given in [3].

Currently, General Electric uses the procedures in Section 3 (normal operating mode) to

perform acceptance testing of the PDIU prototype hardware for the Army.

1.2 SCOPE

This DP defines all demonstration piocedures that are required to completely exercise the

PDIU's self-test in fault-free and fault-inserted conditions. It includes a system acceptance test

which verifies the PDIU software and hardware interfaces, and individual tests of each PDIU

function. This DP is designed to encompass digital VLSI testability issues and will therefore be

limited to testing only the PDIU's digital functions. The analog functions/circuits and their

diagnostic tests will not be demonstrated. In addition, to keep scope of the demonstration within

contract fund limits, the fault universe will consist only of faults in the non-external-interface

portions of the PDIU processor, memory, and I/O boards (all components except the 1553 chip-set

and the RS-422 transceiver components). There will be two types of demonstration procedures

used: procedures that verify the correct operation of a fully operational PDIU, and procedures that

A-31

include insertion of known faults to demonstrate and verify the fault detection capability of the

PDIU. Fault demonstrations will be accomplished by hardware and software fault insertion.

In this plan a fault refers to the condition when one or more functions on the PDIU

processor, memory, or 1/0 boards fail to meet its performance specification. Faults are reported to

the operator by two means: the illumination of the BIT Failure Indicator Lamp and any error

message displayed on the Display and Control Unit (DCU), which monitors and controls the

operation of the PDIU via the 1553 bus, under normal operating conditions. A list of these

messages is shown in Table 1. Under normal (no-fail) operations the DCU displays the message

"PDIU is OK," and the BIT lamp is off. When the PDIU self-test detects a fault, either the BIT

lamp is on or an error message is displayed on the DCU screen, or both. The definition of a

diagnostic error is when the PDIU self-test fails to detect and report a failure, or when it produces a

false alarm (e.g., the BIT lamp remains on or a DCU error message is displayed during normal

operation). Also, a fault is considered detected if the PDIU does not respond at all on power up.

The tests under consideration in this DP are primarily software-based tests, except for the Vcc

monitor on the I/O board (see [1] for details).

1.3 OVERVIEW OF THE DEMONSTRATION PROCEDURE

The demonstration will be a one-day, four- to eight-hour demonstration to be conducted at

General Electric Automated Systems Department's Burlington, MA, facilities in the presence of

representatives from ALPHATECH, Inc., and the Government (RADC).

The objective of this demonstration is to verify that the PDIU's self-test capability satisfies

its functional design requirements in a fault-free and a fault-inserted system environment. Faults in

the PDIU will be detected by three tests/monitors: the Power-Up Confidence Test (PUCT), the

On-Demand/On-Event (OD) tests, the Continuous Monitoring (CM) mode. These tests are func-

tional tests and report the operational status of the PDIU. Testing is conducted on the functional

units of the PDIU at the unit test level and system test level by exercising various functions and

A-32

TABLE 1. DCU ERROR MESSAGES AND ERROR CODES FOR THE PDIU

NUMBER NAME MESSAGE

0 All Tests 00 - All tests passed, PDIU OK
XX - One or more tests failed

1 Processor Test 00 - Test passed
01 - Test failed
Note: this test is only run at power-up

2 RAM Test 00 - Test passed
01 - Bad SRAM
02 - Bad 1553 SRAM
Note: this test is only run at power-up

3 Timer Test 00 - Test passed
01 -Microprocessor timer failed
02 -1/0 Board timer failed
03 - Both timers failed
Note: this test is only run at power-up

4 PROM Test 00 - Test passed
01 - PROM checksum failed

comparing the results of the tests with their expected values. If no faults are detected, the tests will

declare the PDIU as operational. More detail of the PDIU's self-diagnostic capability is located in

[1] and [3].

The demonstration will perform PUCT, OD, and CM during normal operational (no

failures) and fault-inserted modes as detailed below. An engineering prototype of the PDIU will be

used for the demonstration to facilitate the procedure.

1.3.1 No-Fail Demonstration Procedure

Prior to the PDIU demonstration, the PDIU will undergo board test to verify that it is fully

operational. For this demonstration, board test will be a comprehensive functional test (more

extensive than the self-test) of the PDIU digital hardware, via a board-test connector and an Intel

board tester.

The correct operation of the diagnostic capability of the PDIU when the system is fully

operational will then be demonstrated. This procedure will execute all of the PDIU's self-test

A-33

system softy are and verify that the tests performed by this software do not detect any errors and

that no false alarms are generated.

For this demonstration, any diagnostic errors (false alarms) will be investigated and

recorded as described in subsection 1.3.3.

1.3.2 Fault Insertion Demonstration Procedure

Faults will be inserted one at a time. Faults will be inserted using both hardware (i.e.,

physically inserted faults) and software (e.g., loading digital registers with erroneous data)

methods (see Appendix B for hardware insertion techniques). Faults will be selected from the

fault-classes that the PDIU self-diagnostics were designed to detect in accordance with the purpose

of this plan (to verify compliance with design requirements). These fault classes are described in

[4]. Both primary and alternate fault insertion procedures are provided as part of this plan for use

as described below in Section 4.

Fault insertion demonstration will consist of two phases. First, all primary faults will be

inserted individually. All PDIU self-diagnostics elements will be executed in sequence for each

fault insertion, and the diagnostic outcomes (BIT lamp status, DCU message, and PDIU response)

will be recorded. The fault insertion procedure will be deemed successful if either the BIT lamp

remains on, a DCU error message is displayed, or the PDIU fails to respond to commands (since

this provides operator recognition of a fault). If none of these outcomes occur, a diagnostic error

has occurred and will be handled in accordance with subsection 1.3.3.

In the second phase, the Government will randomly select faults from the alternate fault

list. The maximum number of faults in this phase will not exceed the number of fault classes

represented by the primary fault insertion list. Diagnostic errors occurring in this phase will be

treated as outlined in subsection 1.3.3.

Unless otherwise instructed by the Government, PUCT must be perfonned after each fault

insertion procedure. If PUCT fails after the fault is supposedly removed, then the steps outlined in

subsection 1.3.3 will be performed to determine whether a diagnostic error has occurred.

A-34

1.3.3 Diagnostic Error Handling

A diagnostic error occurs when the PDIU self-test capability responds incorrectly to a

demonstration procedure. For this plan, an incorrect response is either indication of a fault (by any

of the means detailed in subsection 1.2) when the PDIU is fully operational, or no indication of a

fault when a known fault is inserted or emulated.

Should this demonstration uncover any diagnostic errors, the following steps will be taken.

If a diagnostic error occurs during the demonstration, the first step will be to repeat the procedure

on which the error occurred. The primary reason for repeating the procedure is to ensure that the

demonstration test operator is not the source of the error. Should the diagnostic error be repeated,

and operator error has been eliminated as-the source, evaluation of the demonstration unit is

required to determine the nature of the error. Depending on the nature of the diagnostic error,

evaluation of the hardware and/or software may be required to assess how and where the problem

is arising. If an unintentional fault (one that is not mean, to be inserted) is found to be the source

of the diagnostic error, then the fault will be removed and the demonstration unit will be re-tested,

to verify its integrity. Note, if this unintentional fault occurs during supposedly "fault-free"

conditions and is detected, we will score the unintentional fault as a successful fault-insertion test.

On the other hand, if a testability design error is found to be the cause of the error, it will be

reported as a diagnostic error (if the self-test feature was meant to detect it).

Normally, provisions would be made for correcting and re-testing failed demonstration test

steps, but this test plan has none since this is outside the scope of this feasibility demonstration.

For example, typically, if a diagnostic error occurs during fault insertion testing, the error will be

fixed and the offending insertion step will be repeated. Furthermore, the Government would be

allowed to select at most three additional fault insertions from the same fault class to be

demonstrated.

1.3.4 Acceptance Criteria

The PDIU self-diagnostics feature will be deemed acceptable in any of the following

conditions:

A-35

1) No diagnostic errors occurred.

2) All diagnostic errors that occurred initially were rectified and all subsequent additional
demonstrations resulted in no errors (rectification will not be attempted for this effort).

3) An acceptable plan for.

a) investigating, during operational test and/or initial fielding, the impact each error
has on overall diagnostic performance, and

b) correcting the problem if the error has a large impact has been submitted.

1.4 RESPONSIBILITIES

1.4.1 Contractor Responsibilities

General Electric is the responsible contractor for the PDJU. It will be responsible for

physically operating the PDIU in accordance with the requirements of this document and is

responsible for keeping a log of activities and providing a summary of the results in accordance

with the requirements of this document.

1.4.2 Procuring Agency Responsibilities

The Government will be required to select alt,.mate faults for the second phase of the fault

insertion demonstration and evaluate the acceptance criteria. If rectification of diagnostic errors

were part of this plan, the Government would also be responsible for selecting additional faults to

be inserted within the offending fault class.

1.5 SUPPORT REQUIREMENTS

Table 2 indicates the specific test equipment (or its equivalent) required for testing the

PDIU. Personnel requirements include a system software engineer, a hardware engineer, and a

hardware technician to participate in the demonstration and provide any necessary technical

information.

A-36

TABLE 2. DEMONSTRATION HARDWARE REQUIREMENTS

Part Number Vendor Qtmntity Description

HIPSQA01 Quality I set Floppy disks containing test software
HIPSQA02 Quality 1 Floppy disks containing test software

3465A HP 2 Digital Multimeter with probes
- Intel 1 I2ICE Development System with 80186 emulation

probe
6291A HP 2 Power Supply, Variable (40V, 5A)

- HP 1 Precision Voltage Source
- HP 1 Storage Oscilloscope
- GenRad 1 Decade Resistor

SBA100F Loral 1 1553 Bus tester and monitor
VT220 DEC 1 ASCII terminal, screen and keyboard

- GE-ASD 1 PDIU Engineering Development Test (EDT) Unit
- GE-ASD 2 Power Cables
- GE-ASD 2 sets 1553 Bus terminators and 1553 Bus connectors
- GE-ASD I PDIU-to-Serial, Communication Converter Cable
- GE-ASD 1 RS422-to-RS232 Serial Communication Converter
- GE-ASD 1 Serial Communication Convener-to-Terminal Cable
- GE-ASD 1 set Floppy disks containing additional demonstration test

software (generated specifically for this
demonstration and not under quality control)

1.6 APPLICABLE DOCUMENT'S

1. System Hardware Specification for Critical Iten Development of the PDIU, GE
Document Number 2722630, revision 2, 10 November 1986.

2. Program Performance Specification for the PDIU, GE Document Number 12562789,
30 March 1989.

3. "Test Effectiveness Analysis Report for the Prognostic Diagnostic Interface Unit,"
subsection A.2 in Analysis and Denonstration of Diagnostic Performance in Modern
Electronic Systems, Final Report on Contract F30602-88-C-0068, TR-494,
ALPHATECH, Inc., March 1991.

4. "Guidelines for Preparation of a Demonstration Plan," Section 7 in Analysis and
Demonstration of Diagnostic Performance in Modem Electronic Systems, Final Report
on Contract F30602-88-C-0068, TR-494, ALPHATECH, Inc., November 1990.

5. MIL-STD 1686, Electrostatic Discharge Control Program for the Protection of
Electrical and Electronic Parts, Assemblies ad Equdpment.

6. DoD-HDBK 263, Electrostatic Discharge Control Handbook for the Protection of
Electrical and Electronic Parts, Assemblies and Eqidpment.

7. MATE Guidelines, Document Number 2806645, Rev B, I April 85. Applicable to
Acceptance Test and Verification of Testability, subsections 3.7.4 - 3.7.9.

A-37

2. COMPLIANCE DATA

This demonstration plan is fully compliant with the comprehensiver...ss requirements stated

in [4] as follows:

2.1 NUMBER OF FAULTS

The number of fault classes for which the PDIU self-diagnostics has been designed to

detect faults is 17 (see Table 3). The number of primary inserted and emulated faults required by

[4, subsection 2.1] to achieve a 95% confidence in a 90% FFD with zero diagnostic errors is 32.

A total of 36 primary faults will be either inserted or emulated in this plan. In addition, the

Government will also select up to 35 faults from the alternate list in accordance with subsection

1.3.2 of this plan.

2.2 PERCENTAGEOF FAULT CLASSES DEMONSTRATED

This is the percentage of fault classes in which faults are inserted or emulated. The entire

universe of faults may be larger than the classes used here since the requirement is only for

demonstrating the fraction of those classes that the PDIU self-diagnostic capability is designed to

detect. The requirement as stated in [4, subsection 2.2] is 80 percent. Out of the 17 fault classes

that the PDIU is designed to detect (see [3]), the demonstration procedures in Section 4 cover I I of

those classes, for a percentage of 65 percent. (Note that as stated in subsection 1.2, we have

restricted this demonstration to the PDIU's digi:al functions, of which there are 16 fault classes.

Thus, the percentage of these relevant fault classes demonstrated is 69 percent. Note also that if

this were an actual demonstration plan ,,ersus an illustration, this figure v ould not be acceptable)

2.3 PERCENTAGE OF THE FAILURE RATE DEMONSTR'TED

This is a two-part requirement. First is the ratio of the sum of failure rates of the

demonstrated fault classes to the sum of the failure rates for those fault classes that the PDIU

A-38

TABLE 3. COMPREHENSIVE NESS OF PDPJ FAULT INSERTIONS

Fault Number and Component/Componient Failure Rate Reason for No
Class Type of Groups (FPMH) Insertion'

Insertions'

Processor Board

210 6FE Microprocessor and 10.5
Support Electronics

220 - Local Bus (Address Latch 1.5 A
and Control Signal Buffer)

230 21-1 Station Bus (Address Latch, 4.8
Data and Control Transceiver)

240 - Buffer/Transceiver Control 2.0 A,B
Circuitry (PAL & Glue Logic)

250 N/A Test Buffer NI
260 lFI/3FE SRAM (32K x16) 12.8
270 IFI/3FE- 1553 SRAM (2K x 16) 0.8
280 2F1 PROM 6.4
290 N/A RS-422 Interface NI
2A0 1553 Remote Terminal Interface 15.1 C,D
2130 N/A 1553 Transformers NI

Memory Board (Each, Two Total)

310 3171, 2FE EEPROM Memoty Devices (24-8K x 8) 48.0
320 - Dec~de and Control 20.0 A
330 301 Station Bus and DTACK Generator 1.2
340 N/A Testability Transceiver NI

110 Board

410 3FI, 3FE Programmable Counter/Timer 2.0
42u - Decode and Control Interface 1.5 A,D.
430 1F! Station Bus and DTACK Generator 1.2
440 2171 BIT Lamp Driver 0.2
450 -I7 Wce Monitor 2.0
460 - A/D Conveuiers 2.5 A,D
47 0 NA Filters NI
480 NA Multiplexers NI

K y:Key:

171 1la'dwarr Fault Insertion A No Physical Access (Unsocketed)
FE Software Fault Emulation l3 1 o Softwai Access (Component Not Software Addressed)
N/A Not Applicable-Purposcly Not Addiessed in C Unavailable Support Equipment Required

PDIU Self-Test Feature De4sian D Emulation Requires New/Modified BIT Software
N1 INC: Included

self-diagriodtc apabiiity is designed to dt-tect. The relquirement stated in [4, subsection 2.3] is 90

percent. Thei total failu-e rate for the PDIU-aetecable fauilt classes is 201.7 faults per million hours

(FPMH), while the failure rate for the classes demonstrated is 143.1 FPMH, for a percentage of

A-39

class failure rate demonstrated of 7 j ,ercent. The second part of the requirement is the ratio of the

sum of the failure rates of those failure tv'-es foi which the specific faults demonstrated are

representative to the sum of the failure rates for the fault classes that the PDIU self-diagnostic

capability is designed to detect. The req..irement stated in [4, subsection 2.3] is 30 percent.

Appendix C presents the manner in which the figure was calculated for this demonstration-20.50

percent. (Because this demonstration is merely an illustration of the approach, the requirements of

[4] need not be met.)

2.4 PERCENTAGE OF DIAGNOSTIC FEATURES DEMONSTRATED

The PDIU self-test consists of PUCT, OD, and watchdog timer software-based tests and

two voltage monitoring hardware-based tests. The software-based tests are all sirle string, so

th.at by initiating their execution all tests are run. Since all software- and hardware-based tests are

demonstrated, 100 percent of the PDIU features are demonstrated. This complies with the 100

percent requirement in [4, subsection 2.4] and 85 percent requirement of [4, subsection 2.5],

respectively.

2.5 DIAGNOSTIC OUTCOMES DEMONSTRATED

The PDIU has only fault detection requirements. Therefore the correct diagnostic outcomes

are either that the PDIU correctly detects the presence of a fault or that it does not generate false

alarms when no faults are present. Faults are reported to the operator by the illumination of the

PDIU BIT lamp and error messages on the DCU. For the PDIU there are two outcomes:

a) Under no-fault conditions: BIT lamp off and DCU message "'PDIU OK"

b) Under fault-inserted/fault-emulated conditions: BIT lamp on and DCU error messages
(e.g., "PDIU NOT OK")

Outcomes are operator recognition of either: a) when the PDIU is fault-free, or b) when the PDIU

has a fault inserted/emulated. Outcome a) will be demonstrated once in Section 3 and between

every fault insertion/tinulation step in Section 4. Outcome b) will be demonstrated for every fault

A-40

insertion step in Section 4. The requirement of 100 percent demonstration of all diagnostic

outcomes is therefore satisfied.

A-41

3. DETAILED DEMONSTRATION PROCEDURE FOR OPERATIONAL SYSTEM

These steps describe the steps to validate the proper operation of the tests when applied to a

fully-operational PDIU.

3.1 TEST SETUP

Prior to the demonstration, the PDIU will have successfully completed board test to verify

that the PDIU is fully operational. In addition, its self diagnostic test software has been loaded

into its non-volatile memory (Processor Board PROM, 280) using the I2ICE development system.

Unless otherwise specified all tests will be performed at 25 +/-10 degrees C. Record results on the

Result sheet of this test step. Figure 1 illustrates the proper demonstration setup.

POWER
CONNECTORS

A J6
POWER S1PWR PDIU
SUPPLY 0 (UUT)

PS1 .-.--.- J2 Brr

Figure 1. Demonstration Setup

The test setup is performed as follows:

• Verify that the power switch is in the open position.

" Adjust input power supply to 28V +/-0.5V, no current limit.

• Verify that the POWER and BIT lamps on the UUT are illuminated.

• With a DVM, verify that the following volta. .e within specified limits on J5 of the
UUT (PDIU Test Connector)

A-42

Signal Name (+)lead to Signal Name (-)lead Limits
of DVM of DVM

28OUT (J5-M) 28RETOUT (35-N) 27.OOV to 29.OOV

+5P (5-A) SGND (J5-D) 4.85V to 5.25V

+15P (J5-B) SGND (J5-D) 14.45V to 15.45V

-15P (J5-C) SGND (J5-D) -15.45V to -14.45V

Adjust the input voltage, PS1 to 18V +/-0. 1V

• With a DVM, verify that the proper voltages (5P,+15P,-15P) are present on the J5
connector of the UUT. Use voltage limits specified above.

• Adjust the input voltage, PS1 to 33V +/-0.1V

• With a DVM, verify that the proper voltages (5P, +15P,-15P) are present on the J5

connector of the UUT. Use voltage limits specified above.

° Return the input voltage, PSI, to 28V +/-0.5V.

* Disconnect the Cable to J1 of the UUT.

• Verify that the proper voltages are present on the J5 connector of the PDIU. Use the
voltage limits as specified above.

• Reconnect the Cable to J1 of the UUT.

* Disconnect the Cable to J2 of the PDIU.

* Verify that the proper voltages are present on the J5 connector of the PDIU. Use the
voltage limits as specified above.

• Reconnect the Cable to J2 of the UUT.

• Open Switch, Si.

3.2 DEMONSTRATE PUCT/OD TESTS IN A FULLY OPERATIONAL PDIU

PUCT for the PDIU consists of a number of tests, which validate the proper operation of

the following hardware functions:

Processor Instruction Set Test

Processor Register Test

Processor Address Test

A-43

RAM Test (64K SRAM and 4K of shared (1553) memory)

Timer Tests (three timers on the Processor board and three timers on the I/O board)

A complete description of PUCT and OD tests is given in [3]. After successful completion of the

PUCT, the OD tests are then performed. This step continues to validate the proper operation of the

PDIJ. Specific OD tests performed are:

Processor PROM test

1553B self-test

Memory board EEPROM test

I/O board analog data acquisition test

At the completion of these tests, it an error condition is detected, the PDIU will illuminate the BIT

lamp. These tests are invoked immediately after a power-up reset. The results of the PUCT will

be summarized in the PUCT Status code word (Table 4) and will be recorded in EEPROM. The

results will be reported to the operator via the BIT lamp.

With the test configuration setup as in Fig. 1, the test steps are as follows:

0 Close switch S 1

* Verify that the POWER and BIT lamps on the UUT are illuminated immediately upon
power up.

* Verify that the BIT lamp is extinguished within approximately five seconds.

(The order of the previous two steps ensures that the BIT lamp is functional and that the
PDIU's processor and I/O boards are fully operational.)

* Record test results

3.3 DEMONSTRATE THE WATCHDOG TIMER MONITOR FOR A FULLY

OPERATIONAL PDIU

After PUCT is successfully repeated, the watchdog timer is initialized and activated by

system software. Thus, during the OD tests, if the watchdog timer did not timeout and cause a

system reset (indicated by the BIT lamp being illuminated), then the timer has demonstrated proper

functionality. This self-test feature will not be explicitly demonstrated. Instead, the proper

operation of its functionality will be inferred from the successful demonstrations of PUCT and the

A-44

TABLE 4. PUCT STATUS CODES

Bit 0 Contains the result of the Processor Test

Bit 1 Contains the result of die RAM Test

Bit 2 Contains the results of the 1553 RAM Test

Bit 3 Contains the results of the Timer Test, I/O Counter/Timer 0

Bit 4 Contains the results of the Timer Test, 1/0 Counter/Timer 1

Bit 5 Contains the results of the Timer Test, I/O Counter/Timer 2

Bit 6 Contains the results of the Timer Test, Microprocessor Timer 0

Bit 7 Contains the results of the Timer Test, Microprocessor Timer 1

Bit 8 Contains the results of die Timer Test, Microprocessor Timer 2

Bits 9- 15 Are not used

Convention of bit values '0' means a passed test
'1' means a failed test

OD tests. Note, this feature has been thoroughly tested and demonstrated during the formal sell-

off of the PDIU and its application software.

3.4 DEMONSTRATE THE VCC MONiTOR FOR A FULLY OPERATIONAL PDIU

The steps for this demonstration are the following:

° Disconnect power to the PDIU. Verify that the POWER lamp is not illuminated.

" Remove the J/0 board. Insert an extension card and replace the I/O board on the end of
the extension board.

" Apply power to the PDIU, verify that the POWER and BIT lamps are illuminated.
Verify that the BIT lamp is extinguished after approximately five seconds.

" With a DVM verify that the voltage across pins A-9 (DGNDSENSE) and B-9
(+5V_SENSE) of the I/O board connector is greater than +4.63 V (the low threshold
limit of the Vcc Monitor).

° Remove power to the PDIU. Remove the I/O board and the extension card. Replace
the I/O.

A-45

4. DEMONSTRATION PROCEDURE FOR FAULTY SYSTEM STATES

This subsection provides detailed instructions for performing fault insertion demonstrations

on the PDIU. The demonstrations are divided into two separate subsections: hardware fault

insertion and software fault emulation. Each subsection provides a template for the fault insertion

or fault emulation process. This is then followed by a list of selected fault classes to be

demonstrated. Within each fault class, specific instances are selected as primary demonstrations.

A description of alternate demonstration candidates within each fault class, for selection by the

Government if necessary (see subsection 1.3.3), is also provided. Appendix B provides guidance

on the fault insertion techniques to be used in this demonstration

4.1 HARDWARE FAULT INSERTION

This demonstration is being performed using the PDIU engineering prototype to facilitate

broader fault insertion demonstration tests. The PDIU prototype is more amenable to fault

insertions because it contains socketed components that the production unit is not permitted to

contain (due to environmental specifications). In general, the faults inserted for this demonstration

will be accomplished by the following means:

* Open leads or remove socketed components.

" Generate shorts between accessible nodes with jumpers.

• Use of extension cards to produce faults on the board/backplane connector.

" Produce shorts, opens or faulty signal behavior at the PDIU 1553 Bus Interface.

Appendix B discusses the specific techniques to be used in creating these faults.

4.1.1 Fault-Insertion Demonstration Procedure Template

The following steps are to be followed in demonstrating each of the hardware fault

insertion tests in this denonstration plan. The specific faults to be inserted are given in subsection

A-46

4.1.2. It is assumed that the PDIU has undergone board test and has successfully demonstrated its

self-diagnostics as in Section 3.

A. PRETEST INPUTS

1) Verify that the PDIU power switch (S1) is in the OFF position. Verify that the POWER
and BIT lamps are not illuminated.

2) Power up the PDIU by placing the power switch in the ON position. PUCT/OD Tests
will be performed automatically as specified in subsection 3.2. Verify that the POWER
and BIT lamps are illuminated upon power up. Verify that the BIT lamp is extin-
guished within approximately 5 seconds after power up. If the BIT lamp remains
illuminated, then the PDIU may be faulty and must be repaired before continuing the
fault insertion demonstration. If a fault insertion demonstration was performed imme-
diately before this step, then it will be deemed invalid and must be repeated. See
subsection 1.3 and Part E of this subsection for details on how this situation will be
reported and what steps will be followed if it is deemed that the PDIIU is not faulty (a
diagnostic error).

3) Turn off power to the PDITU by placing the power switch in the OFF position. Verify
that both the POWER and BIT lamps are extinguished.

B. FAULT INSERTION

Note, printed circuit boards and integrated circuits (ICs)/components may be sensitive to

electrostatic discharge (ESD). To prevent ESD damage, the components should be handled in

accordance with ESD prevention procedures (see [5] and [6] for details). While the fault is being

physically inserted, the boards/components shall not be powered.

1) Locate the board on which the fault is to be inserted in the PDIU test cage. Carefully
remove the board from the PDIU and place it on an ESD grounding mat.

2) Locate the proper component on the board according to the circuit card assembly
drawings (see Appendix D). Remove the device from its socket. Locate the proper pin
on the component and perform the desired fault insertion technique as described in
Appendix B. Carefully re-insert the device with only its known fault onto the board.

3) Re-insert the board back into its original slot in the PDIU card cage.

C. DEMONSTRATION OF PDIU SELF-TEST FAULT DETECTION PERFORMANCE

Fault detection is facilitated by the PDIU self-diagnostics through the BIT lamp and

through DCU error messages. For PUCT/OD tests demonstration, the BIT lamp and any DCU

A-47

error message indicate that a fault is detected. No demonstration of the PDIU's CM fault detection

capability is provided in this plan. The specific steps are as follows.

1) Turn on power to the PDIU. PUCT/OD tests will be initiated automatically upon
power up.

a) Verify that the POWER and BIT lamps are illuminated upon power up.

b) Observe and record BIT lamp status after approximately 5 seconds (upon power
up) and whether any error message is displayed on the DCU.

2) Interrogate the EEPROM for BIT status (optional). This will indicate which test
detected the fault.

3) Turn off power to the PDIU by placing the power switch in the OFF position. Verify
that the POWER and BIT lamps are extinguished.

D. REMOVAL OF INSERTED FAULT AND VERIFICATION OF ITS REMOVAL

1) Follow the steps in part B to locate the PDIU board containing the known fault, remove
board, remove the affected device.

2) Remove/repair the inserted fault on the component, or if the fault insertion was
destructive, obtain a new component with the same part number.

3) Re-insert the non-faulty component onto the proper PDIU board, and then re-insert the
board into the proper slot of the PDIU test card cage.

4) Power up PDIU. PUCT/OD tests will be performed automatically. Verify that the
POWER and BIT lamps are illuminated. Verify that the BIT lamp is extinguished
within approximately 5 seconds (upon power up) and no error messages are displayed
on the DCU) and that no other faults have been accidentally inserted.

Note, Step 4 is a repeat of Step 2 in Part A. If either the BIT lamp remains on or a DCU

error message is displayed, the PDIU may still be faulty and must be repaired before continuing

(see subsection 1.3 and Part E, below, of this plan). Execution of PUCT and OD tests for

verifying that the PDIU is fully operational need only be done once between each fault insertion.

After Part D is complete, another fault is selected and Parts B-D will be repeated.

E. DEMONSTRATION GRADING CRITERIA

1) During Part A (or D), if PUCT/OD tests detect and report any errors, then the PDIU
may be faulty and must be repaired. A detailed examination of the PDIU will be made
to find and repair the fault. If no fault can be found, and upon re-execution of PUCT
and OD tests, the PDIU status is declared operational, then a false alarm will be
recorded in Section 5. But before continuing this demonstration, the PDIJ must be

A-48

returned to operational status. When the PDIU has been repaired and returned to a fully
operational state, the previous demonstration step will be repeated.

2) If PUCT/OD tests indicate the presence of fault(s) after removal of an inserted fault
(Part D), then the previous fault-insertion demonstration step is deemed invalid and
must be repeated after the PDFJ is repaired. This is because additional/unintentional
fault(s) may have been introduced during either the fault insertion or the fault removal
process, and therefore it is impossible to ascertain whether the particular demonstration
was valid. It is immaterial whether PUCT or the OD tests detected a fault during Part
C, because they could have detected the unintentional fault.

3) If the inserted fault was not detected and reported to the operator during Part C, then the
demonstration step is deemed a failure (a diagnostic error has occurred). This failing
result will be reported in Section 5 of this plan. In addition, as outlined in subsection
1.3.3 of this plan, for each diagnostic error of this type the Government will select
between I and 3 additional faults from the same fault class for additional demons-
tration. Note, normally such a diagnostic error would required examination of the
PDIU self-test feature for possible software or hardware changes to correct the error.
This analysis is beyond the scope of this illustrative demonstration plan.

4) If PUCT/OD Tests detected a fault during Part C and no faults were detected after the
fault was removed (during part D), then the demonstration step is deemed a success.
This result will be reported in Section 5.

4.1.2 Fault Classes and Primary and Alternate Faults To Be IJserted

This subsection indicates the fault classes whose failure is to be inserted in the

demonstration. Primary faults are those that will be inserted by the contractor, while alternate

faults are available for insertion at Government request. The fault class numbers correspond to

those shown in Table 3.

4.1.2.1 PROCESSOR BOARD

The Processor Board is located in slot 3 of the PDIU.

4.1.2.1.1 Station Bus (230)

a) Multiple Open Pins on the Station Data Bus Transceiver

Primary Fault: Remove component U37, using Technique 5 from Appendix B.

Alternate Faults: Disconnecting any data pin (pins 11-18) on U37 is allowed.

b) Short Between Input Pins of the Station Address Bus Transceiver

Primary Fault: Short address pins 6 and 9 of U34 together using Technique 7.

Alternate Faults: Shorting any two address pins (pins 2, 5-6, 9, 12, 15-17, 19)
together is allowed.

A-49

4.1.2.1.2 SRAM (260)

a) Short Adjacent Address Pins

Primary Fault: Short address pins 1 and 3 together on SRAM U10 using Technique 7.

Alternate Faults: Shorting any other two address pins together on SRAM U10 is
allowed.

4.1.2.1.3 1553 SRAM (270)

a) Data Pin Stuck at High

Primaf Ta1t. Short data pin 19 on SRAM U6 to +5V (pin 24, the Vcc input) using
Technique 3.

Alternate Faults: Shorting any other data pin (pins 11-19) on SRAM U6 to +5V is
allowed.

4.1.2.1.4 PROM (280)

a) Data Pin Stuck at Low

Primary Fault: Short data pin 15 of U7 to 0.OV (pin 14) using Technique 1.

Alternate Faults: Shorting any data pin (pins 11-13, 15-19) of U7 to 0.OV is allowed.

b) Open Input (address) Pin

Primary Fault: Remove address pin 23 on U7 using Technique 6.

Alternate Fault: Removing any address pin (pins 1-10, 21, 23-26) on U7 is allowed

4.1.2.2 MEMORY BOARD

Faults will be inserted on Memory Board #2, which is located in slot 5 of the PDIU.

4.1.2.2.1 EEPROM Memory Device (310)

a) Multiple Open Pins

Primary Fault: Remove EEPROM memory device, U21 using Technique 5.

Altemate Faults. Removal of another EEPROM Device (U 10) from the memory board
is allowed.

b) Data Pin Stuck at Low

A-50

Primary Fault: Short data pin 13 to ground (pin 14) on EEPROM memory device U21
using Technique 1.

Alternate Faults: Shorting of any other data pin (pins 11-13, 15-19) on either socketed
EEPROM memory device (U 10 or U21) is allowed.

c) Address Pin Stuck at High.

Primary Fault: Short address pin 2 to +5V (pin 28) on EEPROM memory device U21
using Technique 3.

Alternate Faults: Shorting of any other address pin (pins 1-10, 21, 23-26) on either
socketed EEPROM memory device (U 10 or U21) is allowed.

4.1.2.2.2 Station Bus (330)

a) Open Data Pin between the Data Transceiver and the On-board Circuits

Primary Fault: Remove data pin 15 on U33 using Technique 6.

Alternate Fault: Removal any other data pin of data transceiver U34 connected to on-
board circuits is allowed.

b) Short Data Pins on the Station Bus Backplane

Primary Fault: Short data pins D6 and D7 (C24 and C25) on slot 5 backplane using
Technique 7.

Alternate Faults: Shorting any other data (C18-C33), address (B18-B36) or control
(A18-21, A24, A28, C10-1 1) connector pins on the slot 5 backplane is allowed.

c) Output Pin Stuck at High on the Address Latch

Address Line is Stuck at High.

Primary Fault: Short output pin 2 to +5V (pin 20) on address latch U36 using
Technique 3.

Alternate Faults: Shorting of any other output pin (pins 2 - 9) on address latch U36 is
allowed.

4.1.2.3 1/O BOARD

The 1/0 board is located in slot 2 of the PDIU.

4.1.2.3.1 Programmable Counterf/imer (410)

a) Multiple Open Pins

Primary Fault: Remove component U5 using Technique 5.

A-51

Alternate Fault: There are no alternate faults for this step.

b) Input Pin Stuck at High

Primary Fault: Remt, ve pin 1 (CLKO data input) of U5 and apply +5V (pin 24) to the
vacant pin socket.

Alternate Fault: Removal of clock output pin (10, 13, 17) of U5 and application +5V to
the vacant pin socket is allowed.

c) Input Pin Stuck at Low

Primary Fault: Short timer input data pin 1 on U5 to 0.OV (pin 12) using Technique 1.

Alternate Faults: Shorting timer input data pin (I - 8) to 0.OV is allowed.

4.1.2.3.2 Station Bus (430)

a) Short between Data Pins on the Control Register (for BIT)

Primary Fault: Short data pins 13 and 14 together on U23 using Technique 7.

Alternate Faults: Shorting any two data pins (I 1 - 18) together on U23 is allowed.

4.1.2.3.3 BIT Lamp Driver/Status Indicator (440)

a) Input Pin Open

Primary Fault: Remove data input pin 18 of status register U23 using Technique 6.

Alternate Faults: Removing of data input pin 18 of status register U23 and shorting it
to &0V using Technique 2.

b) Output Pin Stuck at Low

Primary Fault: Remove data output pin 19 of status register U23 and apply OV to the
vacant socket.

Alternate Faults: Removal of data input pin 19 of status register U23 and the
application of +5V.

4.1.2.3.4 Vcc Monitor (450)

a) Open Pin

Primary Fault: Disconnect DGND_SENSE (A9) on the 110 board edge connector
using Technique 8.

Alternate Faults: Shorting the +5VSENSE input to OV using Technique I is allowed.

A-52

4.2 FAULT EM1JLATION DEMONSTRATIONS

Fauit emulation is defined as a fault that is inserted via software. Once inserted, this fault

manifests the physical behavior of an actual fault. There are two techniques whereby faalts will be

inserted into the PDItJ via the in-circuit emulator (I2ICE):

A) Modify the expected value of the test to yield an "error" when the test is executed under
fully operational conditions. Test conditions: before the test is performed, modify the
expected values. Execute the test; a "failure" should be detected by either PUCT or the
OD tests. Stop test, correct the expected value, and retest the PDIU.

B) At pre-determined breakpoints, the execution of the test is halted, erroneous data is
loaded into the microprocessor's registers (or other addressable/programmable devices
such as the RAM, EEPROM, or programmable counter/timer), and the execution of the
test is resumed. This process is performed by application scftware that inserts these
faults.

4.2.1 Fault-Emulation Demonstration ProcedureTemplate.

It is assumed that the PDIU has undergone board test and has successfully demonstrated its

self-diagnostics as described in Section 3. To perform in-circuit emulation, the 80186 micro-

processor on the PDIU's processor board must removed (note, it is socketed) and the emulator

probe placed in the vacant socket. It is via this probe that the emulator can control the system

operation of the PDIU and directly read addressable memiory/register contents.

,,. PRETEST INPUTS

I) Verify that the PDIU power switch (S 1) is in the OFF position. Verify that the POWER
and BIT lamps are not illuminated.

2) Pcwer up the PDIU by placing the power switch in the ON position. PUCT/OD tests
will be performed automatically as specified in subsection 3.2. Verify that the POWER
and BIT lamps are illuminated upon power up. Verify that the BIT lamp is extin-
guished within approximately five seconds after power up, ensuring that the BIT lamp
is functional and that the PDJU's processor and I/O boards are operational. Also verify
.hat no error messages are displayed on the DCU. If any error message is reported,
then the PDRU is deemed faulty and will be repaired. If a demonstration step was
performed immediately before this step, then it will be deemed invalid (see Part E for
further explanation).

B. FAULT EMULATION

1) Use the 121CE to !oad fault emulation software into the PDIU. For technique A, this
software will activate breakpoints in the test software and will pre.- ,,t the operator to
modify the expected values used by this software. For technique. B, this software will

A-53

activate breakpoints in the PUCT and OD software and will insert faults (e.g.,
erroneous data, read from incorrect memory locations, etc.).

2) Observe and respond to any messages requiring operator input.

C. DETECTION OF KNOWN FAULT-TEST OF SELF-DIAGNOSTICS

1) Initiate PUCT/OD tests.

a. Verify that the POWER and BIT lamps are il'uminated.

b. Observe and record BIT lamp status after approximately 5 seconds upon initiating
PUCT and whether any error message is displayed on the DCU.

2) Interrogate the EEPROM for BIT status (optional). This will indicate which test
detected the fault.

D. REMOVAL OF KNOWN FAULT AND VERIFICATION OF ITS REMOVAL

1) Use the DCU to reload fault free software into the PDIU. Wait for transfer complete
message to appear on the display of the 2ICE.

2) Turn off power to the PDIU by placing the power switch in the OFF position. Verify
that the POWER and BIT lamps are extinguished.

3) Power up PDIU. PUCT/OD tests will be performed automatically. Verify that the
POWER and BIT lamps are illuminated that the fault has been removed. Verify that the
BIT lamp is extinguished within approximately 5 seconds upon power up and no error
messages are displayed on the DCU). This step ensures that no other faults have been
accidentally inserted.

E. DEMONSTRATION GRADING CRITERIA

1) During Part A, if PUCT or OD tests detect and report any errors, then the PDIU is
deemed faulty, and it will be repaired. When the PDIU has been repaired and returned
to a fully operational state, the complete demonstration step will be repeated.

2) if after the inserted fault has been removed and another fault is detected upon retest
(Part D), then the demonstration step is deemed invalid and must be repeated after the
PDIU is repaired. This additional/unintentional fault(s) may have been introduced
during the fault insertion or fault removal process, and therefore it is impossible to
ascertain whether the particular demonstration was valid. It is immaterial whether
PUCT or the OD tests detected a fault during Part C, because they could have detected
the unintentional fault.

3) If the inserted fault was not detected and reported to the operator during Part C, then
the demonstration step is deemed a failure. This failing result will be reported in the
demonstration report.

A-54

4) If either PUCT or OD tests detected a fault during Part C and no faults were detected
after the fault was removed (during Part D), then the demonstration step is deemed a
success. This result will be reported in Section 5.

4.2.2 Fault Classes and Primary and Alternate Faults To Be Emulated

This subsection indicates the fault classes whose failure is to be emulated in the

demonstration. Primary faults are those that will be emulated by the contractor, while alternate

faults are available for emulation at Government request. The fault class numbers correspond to

those shown in Table 3.

4.2.2.1 PROCESSOR BOARD

4.2.2.1.1 Microprocessor (210)

a) Register Failure

Primary Fault: During processor register test activate breakpoint 5 using Technique B.
Prompt the operator to change the current contents of register AX.

Alternate Faults: Repeat the fault emulation, and allow the operator to insert any other

four-digit hexadecimal number.

b) Addressing Mode Failure/Data Fault

Primary Fault: During processor indirect addressing mode test activate breakpoint 11
using Technique B. Prompt the operator to change the value pointed to by register DS.

Alternate Faults: Repeat the fault emulation, and allow the operator to insert any other
four digit hexadecimal number.

c) Addressing Mode Failure/Address Line or Register Fault

Primary Fault: During processor indirect addressing mode test activate breakpoint 11
using Technique B. Prompt the operator to change the value of register SI.

Alternate Faults: Repeat the fault emulation, and allow the operator to insert any other

four digit hexadecimal number.

d) Flag/Jump Command Failure

Primary Fault: During processor test of the Jump if Zero Flag, activate breakpoint 31
using Technique B. Prompt the operator to replace the current contents of register SP
(0001H) to OOOOH, whereby resetting the flag (emulates data bit 1 stuck at 0).

Alternate Faults: Activation of breakpoint 30 and alteration of the contents of SI
register to 01 10H (the expected value for the comparison) using technique A is
allowed.

A-55

e) Instruction Set Failure [could also be use to emulate fault in processor board
PROM (280)]

Primary Fault: During processor test of the ADD instruction, activate breakpoint 57
and change the contents of AX registe, .. 5885H to yield a result different than
expected using technique A.

Alternate Fault: Perform test as above, but alter AX to any number other than 5555H.

f) Processor Internal Timer Failure

Primary Fault: During the processor test of its own internal timers, use technique A to
modify the expected value of the test. This change should cause the detection of a
counting error.

Alternate Fault: Repeat the fault emulation with any other number.

4.2.2.1.2 SRAM (260)

a) Data Fault

Primary Fault: During the RAM test activate breakroint 24 using Technique B.
Prompt the operator to replace the current contents of any RAM location.

Alternate Faults: Activation of the same breakpoint and alteration of the memory
contents to any other value.

b) Address Fault

Primary Fault: During the RAM test activate breakpoint 24 using technique B. Prompt
the operator to replace the value of register BP, containing the next RAM location to be
tested. Resume test.

Alternate Fault: Repeat same test, but --hanging the contents to a different value.

c) Leaking Memory Fault

Primary Fault: During the RAM test activate breakpoint 24 using technique B. Change
the value in the next locatiot: to be examined by writing to two locations instead of one.
Resume test.

Alternate Fault: Repeat same test at a different location in RAM.

4.2.2.1.3 1553 SRAM (270)

Repeat the fault emulations described in subsection 4.2.2.1.2, but for .he 1553 SRAM

locations.

A-56

4.2.2.2 MEMORY BOARD

4.2.2.2.1 EEPROM Memory Device (310)

a) Data Fault

Primary Fault: Interrupt the processing at the point where the ROM checksum is
checked, and alter the previously stored checksum.

Alternate Fault: Repeat the emulated fault, except enter a different number.

b) Address Fault

Primary Fault: Interrupt the processing at the point where the ROM checksum is about
to be calculated, and alter the calculation's start point.

Alternate Faults: Repeat the emulated fault using a different erroneous start point.

4.2.2.3 1/0 BOARD

4.2.2.3.1 Programmable CounterfFimer (410)

a) Data Fault

Primary Faultl: Interrupt testing of 1/0 Timer 0 using Technique B. Initialize counter
0 to return Binary Coded Decimal instead of Binary.

Alternate Faultl: Repeat the fault emulation on another timer.

Primary Fault2: Interrupt testing of I/O Timer 2 using Technique B. Change the value
returned by counter 2.

Alternate Fault2: Repeat the fault emulation with a different changed value.

b) Control Register Fault

Primary Fault: Interrupt testing of I/O Timer 1 using Technique B. Read counter 2
instead of counter 1.

Alternate Fault: Repeat, but read counter 0.

4.3 FAULT CLASSES NOT DEMONSTRATED

This section includes only those fault classes that are tested by the PDIU's self-diagnostics

(see Table 3) but are not included in the demonstration.

Processor Board

Local Bus (220)

A-57

Buffer/Transceiver Control Circuitry (240)

1553 Remote Terminal Interface (2A0)

Memory Board

Decode and Control (320)

110 Board

Decode and Control (420)

A/D Converter (460)

SP/MUX Board

Since there are no test requirements for this board, none of its electronics are tested.

A-58

5. DEMONSTRATION RESULTS

The demonstration was conducted on 23 February 1990 with a Government representative

present, and on 26 February 1990 with only ALPHATECH and GE-ASD personnel attending. A

total of 44 primary and alternate faults were demonstrated over the two days. No false alarms were

encountered in the demonstration.

All 17 primary emulation faults and four alternate emulation faults were correctly detected

by the PDIU. The alternate emulation faults chosen were 4.2.2.1.1b, 4.2.2.1.2a, 4.2.2.1.3b, and

4.2.2.3.1a.2. A no-fail condition was also demonstrated via the emulation procedure, with no

failure registered by the PDIU.

All 19 primary insertion faults and four alternate insertion faults were demonstrated. The

alternate insertion faults chosen were 4.1.2.1.1a, 4.1.2.1.2a, 4.1.2.i.3a, and 4.1.2.1.4a. All

four alternate faults were correctly detected by the PDIU. Of the 19 primary inserted faults, only

16 were correctly detected by the PDIU. These three insertions were each repeated at least once,

with identical results. Primary fault 4.1.2.3.1b, an input pin stuck high on the I/O Board

Programmable Counter/Timer (410), was detected but not reported, i.e., the internal fault register

was correctly set but the BIT lamp did not stay lit. Primary faults 4.1.2.3.2a and 4.1.2.3.3a were

not detected at all. The former was a short between data pins on the control register for BIT on the

I/O Board Station Bus (430), while the latter was an input pin open on the I/O Board Lamp

Driver/Status Indicator (440).

Resources did not permit investigating the causes of these errors. The fact that all errors

occurred on the I/O Board certainly provides focus for any subsequent analysis. The MATE

Guidelines [7] indicate that for three errors out of 44 random, independent trials, there is 90

percent confidence that FFD is at least 85 percent or, equivalently, there is 70 percent confidence

that FFD is at least 90 percent. The Test Effectiveness Analysis Report [3] indicates that the

A-59

estimated FFD was 82 percent if test overlap was accounted for, and 88 percent if it was not.

These figures appear to be consistent.

Because this not an actual acceptance demonstration but an illustrative example, no plans

for correcting or mitigating these diagnostic errors are required.

A-60

APPENDIX A

DEFINITIONS

Fault The condition where one or more functions on the PDIU processor, memory,
or 1/0 board fails to perform as designed.

Diagnostic Error The condition where the PDIU self-test fails to detect and report a failure, or
when it produces a false alarm.

Inserted Fault In general, this term refers to either hardware- or software-inserted faults.
Occasionally we use this term in context in a more restricted sense to refer only
to a fault that is physically inserted (via hardware) and can be verified by
observation.

Emulated Fault A fault that is inserted via software using an in-circuit emulator (ICE). Once
inserted, such a fault must manifest the physical behavior of an actual fault.

Test In this document, a PDIU self-test: the Power-Up Confidence Test (PUCT),
the On-Demand/On Event tests, and the Continuous Monitoring mode.

i

A-61

APPENDIX B

HARDWARE FAULT INSERTION TECHNIQUES

Power must be turned off to the PDIU before any fault can be inserted (although shorting

pins together may be inserted after initialization, if it is more convenient). To insert a fault, first

determine on which board of the PDIU the given fault is to be inserted, and carefully remove this

board from the PDIU. Once the board is out the fault may be inserted, and the board put back into

the PDIU. At this point the PDIU can be safely turned on and the system is initialized. Faults to

be inserted into the PDIU (see subsection 4.1.2) generally fall into 10 categories, and the steps for

inserting each are described below.

1) Short a pin to 0.0 volts (ground).

This fault consists of using a shorting probe lead to connect a given component pin to
ground. Connect one end of the lead to ground, and connect or hold in place the other
end to its respective pin. When manually holding or connecting the probe be sure that
the probe is not touching any pins other than the given one, because grounding certain
pins and voltages could cause damage to the affected component. The faults listed ha% e
been selected to prevent damage to any part of the PDIU.

2) Remove a pin and short it to 0.0 volts.

This is similar to the above, except that the specific pin to be grounded must be
"removed" from the board. This fault has only been selected for those components that
are socketed; i.e., the component is connected to the board via a socket rather than
soldered directly to the board. Thus, no unsoldering of components is necessary, as
this could cause damage to the component. To insert this fault pry the chip out of the
socket and carefully bend the appropriate pin upwards about 90 degrees. Carefully
replace the component with the bent pin out of the socket. It may be necessary to use
an insulator (small piece of paper) to ensure that the bent pin makes no electrical contact
with its socket. From here follow the directions for shorting a pin to ground to
complete the fault insertion.

3) Short a pin to +5.0 volts.

This is identical to shorting a pin to ground, except that the probe is connected to a
+5.0 V voltage source. The board's +5.0 V supply may be used for this +5.0 V
source.

4) Remove a pin and short it to +5.0 volts.

A-62

This is a combination of removing a pin (see type 2) and shorting to +5.0 volts (see

type 3 above), so the steps already listed may be employed here.

5) Remove a component from the circuit board.

This is self-explanatory. The component must be removed before power up to the test
set. Only socketed components may be selected for this fault, again to minimize the
possible damage from unsoldering.

6) Remove a pin.

This refers to removing a pin from a socketed component as described in 2 above
without donnecting it to ground or +5.0 volts.

7) Short two pins together.

Connect two pins together with a wire jumper.

8) Disconnect certain board edge connector pin(s).

The board pins refer to the row of metal pins on the bottom edge of each circuit board,
which make the connections to the rest of the PDIU. To "disconnect" any of these
pins, remove the requested circuit board (make sure that the power is off) and find the
appropriate pin(s) along the bottom edge. Once the pin has been located, disconnect the
corresponding wire that is connected to the board edge connector. A board extender
may be necessary to implement this fault.

9) Short pins together on a connector.

This refers to shorting the appropriate pins on either the 1553 or RS -422 connector. A
jumper wire may be used on the connector to provide the short.

10) Short board pins together.

Similarly to 9 above, a jumper wire may be use to short pins located on the board
connector.

A-63

APPENDIX C

FAILURE RATE OF PDIU FAULT INSERTIONS

C.1 INTRODUC'ION

In t',is appendix %ke calculate the failure rate contribution of the various individual primary

and alternate fault insertions discussed in Section 4. The procedure is as follows. First, we

calculate the relative contribution of the particular hardware or software insertion to the overall

failure rate of its fault class, based on the number of components, pins, etc. in each fault class and

engineering judgement regarding the relati,,e contribution of the failure mechanism represented by

the insertion to the total component failure rate. Next, we multiply the sum of these relative

contributions for each fault lass by the failure rate for the fault class (shown in Table 3). Finally,

we add these fault class figures. We will now proceed by demonstrated fault class, where the fault

class number is given in parentheses after the fault class name).

C.2 MICROPROCESSOR (210)

Register Failure Emulation

We estimate that register faults account for 5 percent of the total microprocessor faults.

Since there are 16 registers, the single primary register fault insertion yields a relative contribution

of .0032. (Note: we will assume that all primary data is accurate to 4 significant figures, and

maintain that significance on derived quantities throughout.)

Addressing Mode Failure;Data Fault Emulation

We estimate that this fault mode accounts for 5 percent of the total microprocessor faults.

Since there are 16 bits and 8 addressing modes, the insertion of both a primary and secondary fault

yields a relative contribution of .0008.

A-64

Addressing Mode Failure/Address Line or Register Fault Emulation

We estimate that this fault mode accounts for 1 percent of the total microprocessor faults.

Since there are 20 address lines, this single primary inertion)ields a relati, e contribution of .0005

FHag/Jump Command Failure Emulation

We estimate that this fault mode accounts for 1 percent of the total microprocessor faults.

There are 92 instructions, and 30 of them have 4 flags each. We calculate the relative contribution

of this single primary insertion as (30/92)(1/4)(.01)=.0008.

Instruction Set Failure Emulation

We estimate that this fault mode accounts for I percent of the total microprocessor faults.

Since there are 92 instructions, this single primary insertion)ields a relati,,e contribution of .0001.

Internal Tinier Failure Emulation

We estimate that this fault mode accounts for .05 percent of the total microprocessor faults.

Since there are three internal timers, this single primary insertion yields a re!ati%e contribution of

.0002.

Summarv

From the above calculations, we see that for the microprocessor we ha,.e demonstrated

examples of fault modes that account for 13.05 percent of the total microprocessor failures.

However, in terms of the contribution of the specific demonstrated faults, and not the fault mode

classes they represent, we have demonstrated faults that account for .56 percent of the total

microprocessor failures. Using the smaller figure, and the microprocessor failure rate of 10.5

FPM, the microprocessor insertions account for 0.0588 FPMH.

A-65

C.3 STATION BUS (230)

Multiple Open Data Bus Transceiver Pin Insertion

We estimate that this fault mode accounts for 20 percent of the total station bus faults.

Since there are six transceivers, and both a primary and alternate fault of this type are inserted, this

sing!e insertion yields a relative contribution of .0667.

Adjacent Address Bus Transceiver Pin Short Insertion

We estimate that this fault mode -iccounts for 30 percent of the total station bus faults.

Since there are six transceivers, and we are shorting two out of 9 pins, this)ield, a relative

contribution of (.3)(2! 7!/9!)(1/6) = .0014.

Smmary

From the above calculations, we see that for the station bus we have demonstrated

examples of fault modes that account for 50 percent of the total station bus failures. However, in

terms of the contribution of the specific demonstrated faults, and not the fault mode classes they

represent, we have demonstrated faults that account for 6.81 percent of the total station bus

failures. Using the smaller figure, and the station bus failure rate of 4.8 FPMH, the station bus

insertions account for 0.3269 FPMH.

C.4 SRAM (260)

Short Adjacent Address Pin Insertion

We estimate that this fault mode accounts for 30 percent of the total SRAM faults. Since

we are shorting two out of 12 address lines, and both a primary and alternate fault of this type are

inserted, this yields a relative contribution of (.3)(2! 10!/12!)(2) -= .(M9I.

Data Fault Err.'lation

We estimate that this fault mode accounts for 40 percent of the SRAM faults. Since there

are 16 data pins, and both a primary and alternate fault of this type are inserted, this yields a

relative contribution of (.4)(1/16)(2) = .05.

A.66

Address Fault Emulation

We estimate that this fault mode accounts for 30 percent of the total SRAM faults (the same

figure used in the insertion discussed above). Since there are 12 address lines, this single primary

insertion yields a relative contribution of (.3)(1/12) = .0250.

Memory Fault Emulation

We estimate that this fault mode accounts for 30 percent of the total SRAM faults. Since all

of the memory locations are checked by the diagnostics, this single primary insertion yields a

relative contribution of .3.

Summary

From the above calculations, we see that for the SRAM we have demonstrated examples of

fault modes that account for 100 percent of the total SRAM failures. However, in terms of the

contribution of the specific demonstrated faults, and not the fault mode classes they represent, we

have demonstrated faults that account for 38.41 percent of the total SRAM failures. Using the

smaller figure, and the SRAM failure rate of 12.8 FPMH, the SRAM insertions account for 4.916

FPMH.

C.5 1553 SRAM (270)

Data Pin Stuck-At Insertion

We estimate that this fault mode accounts for 40 percent of the total 1553 SRAM faults.

Since there are 9 data pins, and both a primary and alternate fault are inserted, this yields a relative

contribution of .0889.

Data Fault Emulation

We estimate that this fault mode accounts for 40 percent of the total 1553 SRAM faults (the

same figure as used immediately above). Since there are 9 data pins, this single primary insertion

yields a relative contribution of .0444.

A-67

Address Fault Emulation

We estimate that this fault mode accounts for 30 percent of the total 1553 SRAM faults.

Since there are 12 address lines, and both a primary and alternate fault are inserted, ,his yields a

relative contribution of (.3)(1/12)(2) = .05.

Memory Fault Emulation

We estimate that this fault mode accounts for 30 percent of the total 1553 SRAM faults.

Since all of the memory locations are checked by the checksum diagnostics, this single primary

insertion yields a relative contribution of .3.

Summary

From the above calculations, we see that for the 1553 SRAM we have demonstrated

examples of fault modes that account for 100 percent of the total 1553 SPLAM failures. However,

in terms of the contribution of the specific demonstrated faults, and not the fault mode classes they

represent, %, e have demonstrated faults that account for 48.33 percent of the total 1553 SRAM

failures. Using the smaller figure, and the 1553 SRAM failure rate of 0.8 FPMH, the 1553 SRAM

insertions account for .387 FPMH.

C.6 PROM (280)

Data Pin Stuck-At Insertion

We estimate that this fault mode accounts for 40 percent of the total PROM faults. Since

there , 8 data pins, and both a primary and alternate fault are inserted, this yields a relative

contribution of (.4)(1/8)(2) = 1.

Open Address Pin Insertion

We estimate that this fault mode accounts for 30 percent of the total PROM faults. Since

there are 15 address pins, this single primary insertion yields a relative contribution of .02.

A-68

Summary

From the above calculations, we see that for the PROM we have demonstrated examples of

fault modes that account for 70 percent of the total PROM failures. However, in terms of the

contribution of the specific demonstrated faults, and not the fault mode classcs they represent, v e

have demonstrated faults that account for 12 percent of the total PROM failures. Using the smaller

figure, and the PROM failure rate of 6.4 FPMH, the PROM insertions account for .768 FPMH.

C.7 EEPROM (310)

Multiple Open Fault Insertion

We estimate that this fault mode accounts for 20 percent of the total EEPROM faults. Since

there are 24 devices, this single primary insertion yields a relative contribution of (.2)(1/24) =

.0083.

Data Pin Stuck-At Insertion

We estimate that this fault mode accounts for 20 percent of the total EEPROM faults. Since

there are 24 devices and 8 data pins, this single primary insertion yields a relative contribution of

(.2)(1/8)(1/24) = .0010.

Address Pin Stuck-At Insertion

We estimate that this fault mode accounts for 30 percent of the total EEPROM faults. Since

there are 15 address lines, this single primary insertion yields a relative contribution of (.3)(1/15) =

.02.

Data Fault/Corrupted Memory Emulation

We estimate that this fault mode accounts for 30 percent of the total EEPROM faults.

Since each memory location is checked by the checksum diagnostics, this single primary insertion

yields a relative contribution of .3.

A-69

Address Fault Emulation

We estimate that this fault mode accounts for 30 percent of the total EEPROM faults (the

same figure used for the address pin insertion discussed above). Since there are 15 address lines,

this single primary insertion yields a relative contribution of (.3)(1/15) = .02.

Sumnmary

From the above calculations, we see that for the EEPROM we have demonstrated examples

of fault modes that account for 100 percent of the total EEPROM failures. However, in terms of

the contribution of the specific demonstrated faults, and not the fault mode classes they represent,

we have demonstrated faults that account for 34.93 percent of the total EEPROM failures. Using

the smaller figure, and the total EEPROM failure rate (for two boards) of 96 FPMH, the EEPROM

insertions account for 33.53 FPMH.

C.8 STATION BUS (330)

Open Da.a Pin Insertion

We estimate that this fault mode accounts for 20 percent of the total station bus faults.

Since there are 16 data lines, this single primary insertion yields a relative contribution of

(.2)(1/16) = .0125.

Short Adjacent Data Pin Insertion

We estimate that this fault mode accounts for 20 percent of the total EEPROM faults. Since

there are 16 data lines, this single primary insertion yields a relative contribution of (.3)(2! 14!/16!)

= .0025.

Output Stuck-At Fault Insertion

We estimate that this fault mode accounts for 20 percent of the total EEPROM faults. Since

there are 8 output pins, this single primary insertion yields a relative contribution of (.2)(1/8) =

A-70

From the above calculations, we see that for the station bus we have demonstrated

examples of fault modes that account for 60 percent of the total station bus failures. However, in

terms of the contribution of the specific demonstrated faults, and not the fault mode classes they

represent, ve have demonstrated faults that account for 4 percent of the total station bus failures.

Using the smaller figure, and the total station bus failure rate (for two boards) of 2.4 FPMH, the

station bus insertions account for .096 FPMH.

C.9 PROGRAMMABLE COUNTERfIMER (410)

Multiple Open Pin Insertion

We estimate that this fault mode accounts for 20 percent of the total programmable

counter/timer (PCT) faults. This single primary insertion yields a relative contribution of .20.

Input Pin Stuck-At Insertions

We estimate that this fault mode accounts for 40 percent of the total PCT faults. Since there

are 8 pins, and there is a primary insertion high and a different primary insertion low, this yields a

relative contribution of (.4)(1/8)(2) = .10.

Data Fault Emulations

We estimate that this fault mode accounts for 10 percent of the total PCT faults. Since there

are 3 timers, each with 8 bits, and two primary and one alternate faults are inserted, this yields a

relative contribution of (.1)(1/3)(1/8)(3) = .0125.

Control Register Fault Emulation

We estimate that this fault mode accounts for 30 percent of the total PCT faults. Since there

are 16 bits in the register, this single primary insertion yields a relative contribution of (.3)(l/16)

.0188.

A-71

Summary

From the above calculations, we see that for the PCT we have demonstrated examples of

fault modes that account for 100 percent of the total PCT failures. However, in terms of the

contribution of the specific demonstrated faults, and not the fault mode classes they represent, we

have demonstrated faults that account for 33.13 percent of the total PCT failures. Using the

smaller figure, and the PCT failure rate of 2.0 FPMH, the PCT insertions account for .663 FPMH.

C.10 STATION BUS (430)

Control Register Data Pin Short Insertion

We estimate that this fault mode accounts for 20 percent of the total PCT faults. Since there

are 16 pins, this single primary insertion yields a relative contribution of (.2)(2! 14!/16!) = .0017.

Summary

From the above calculations, we see that for the station bus we have demonstrated

examples of fault modes that account for 20 percent of the total station bus failures. However, in

terms of the contribution of the specific demonstrated faults, and not the fault mode classes they

represent, we have demonstrated faults that account for .17 percent of the total station bus failures.

Using the smaller figure, and the station bus failure rate of 1.2 FPM!, the station bus insertions

account for .002 FPMH.

C.11 BIT LAMP DRIVER (440)

Open Input Pin Insertion

We estimate that this fault mode accounts for 25 percent of the total BIT lamp driver faults.

Since there is only a single pin, this single primary insertion yields a relative contribution of .25.

Output Pin Stuck-At Insertion

We estimate that this fault mode accounts for 25 percent of the total BIT lamp driver faults.

Since there is'only a single pin, this single primary insertion yields a relative contribution of .25.

A-72

Summary

From the above calculations, we see that for the BIT lamp driver we have demonstrated

examples of fault modes that account for 50 percent of the total BIT lamp driver failures. In terms

of the contr.bution of the specific demonstrated faults, we have also demonstrated faults that

account for 50 percent of the total BIT lamp driver failures. Using this figure, and the BIT lamp

driver failure rate of 0.2 FPMH, the BIT lamp driver insertions account for. 10 FPMH.

C.12 Vcc MONITOR (450)

Open Pin Insertion

We estimate that this fault mode accounts for 25 percent of the total Vcc monitor faults.

Since there is only a single ground line, this single primary insertion yields a relative contribution

of .25.

Summary

From the above calculations, we see that for the Vcc monitor we have demonstrated

examples of fault modes that account for 25 percent of the total Vcc monitor failures. In terms of

the contribution of the specific demonstrated faults, we have also demonstrated faults that account

for 25 percent of the total Vcc monitor failures. Using this figure, and the Vcc monitor failure rate

of 2.0 FPMH, the Vcc monitor insertions account for .50 FPMH.

C.13 SUMMARY OF FAILURE RATE DEMONSTRATED

Table 5 indicates a summary of the failure demonstrated by the primary and alternate faults

demonstrated. The total failure rate demonstrated is 41.35 FPMH. Comparing this figure with the

failure rate for the PDIU-detectable fault classes of 201.7 FPMH, gives a percentage of failure rate

demonstrated by hardware and software insertions of 20.50 percent.

A-73

TABLE 5. DEMONSTRATED FAILURE RATE SUMMARY

Fault Class Fault Class Demonstrated
Number Name Fahre Rate (FPMII)

210 Microprocessor .0588
230 Station Bus .3269
260 SRAM 4.916
270 1553 SRAM .387
280 PROM .768
310 EEPROM 33.53
330 Station Bus .096
410 Programmable Countrr imcr .663
430 Station Bus .002
440 BIT Lamp Driver .10
450 Vcc Monitor .50

-TOTAL 41.35

A-74

APPENDIX D

PDIU CARD ASSEMBLY DRAWINGS

D.1 PROCESSOR BOARD

+1' 0 0 0 0 0 0'
a= C = r~ Q7 ca C? '

1) U U 7 us 1)1?L

-~ [3-E&-E? ______-

CrnC U12 13 C15 E3E- 23E'

2 1J3 C27 =

-09ff- :; C39C3 5t c~s= =0

a 3

2c 2

4 4 8 7 1

A-75v V. ca

D.2 MEMORY BOARD

- C'c

oo D1 co

00-0 1

o1~

C*44

cle C0f

OfI
________ D ________

I [IOf
0 f

0A-7

D.3 I/O BOARD

CJ . . C. C) NC) C)

C*. ~ ~ ~ ~ U CI U))r nl

-u L2u 1
C,0 -iZ J OEE .

n~ZI~ff[___ Eo
-J MI D j

C4C

C14 (}141

06 Ll

tnI C.

U'- 4Ll

s U Ii, CM L

A-77

A.4 SUMMARY AND CONCLUSIONS

In this appendix %,e applied the mL.hodology de% eloped earlier to the validation and

demonstration of the self-test feature of the Prognostic Diagnostic Interface Unit. We dev.eloped a

Test Effectveness Analysis Report and a Demonstration Plan, using the guidelines of Sections 9

and 7, respectively. We conducted a one and one-half day demonstration in ,hich 21 faults %ere

emulated and 23 faults were ph)siclly inserted. All emulated faults %%ere correctly detected, but

diagnostic errors were made on three physical fault in.,ertions on the I/O board. two inserted faults

were not detected at a'., and one %%as detected but not reported. For three errors Out of 44 randomn,

independent trials, there is 90 percent confidence that FFD is at least 85 percent or, equivalently,

there is 70 percent confidence that FED is at least 90 percent. The Test Effectiveness Analysis

Report (subsection A.2) indicates that the estimated FFD was 85 percent if test oerlap was

accounted for, and 90 percent if it was not. Thnese figures appear to be consistent.

The fault emulation process ,ent quite wcll. Close interaction with the ICE operator gave

good ,isibility into the nature of the emulation errors. The emulation of a no- fault condition, and

the resulting proper sy stem response, together w% ith the emulat;on of obset,, er-,elected faults, gae

supporting confidence to what is by its very nature a fairly "invisible" process.

On the other hand, the physical fault insertion process took much longer than originally

en,,isioned. This increased time was required primarily to reload memory after most fault

insertions, since the majority of these insertions resulted in the PDIU microprocessor's Writing

over various memory segments. This effect of fault insertions can occur for any s)stem having a

microprocessor, and shold be explicidly accommodated in the demonstration planning process.

A-78

MISSION

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program :n re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 3I) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

